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MICROINSTABILITY THEORY IN TOKAMAKS*

W.M. TANG

Princeton University,
Plasma Physics Laboratory,
Princeton, New Jersey,
United States of America

ABSTRACT. Significant investigations in the area of tokamak microinstability theory are reviewed. Special
attention is focused on low-frequency electrostatic drift-type modes, which are generally believed to be the
dominant tokamak microinstabilities under normal operating conditions. The basic linear formalism including
electromagnetic (finite-beta) modifications is presented along with a general survey of the numerous papers
investigating specific linear and non-linear effects on these modes. Estimates of the associated anomalous
transport and confinement times are discussed, and a summary of relevant experimental results is given. Studies
of the non-electrostatic and high-frequency instabilities associated with the presence of high-energy ions from
neutral-beam injection (or with the presence of alpha-particles from fusion reactions) are also surveyed.

CONTENTS. |. INTRODUCTION: 1.1. Motivation and
scope of review; 1.2. Properties of tokamak systems;
1.3. Classification of tokamak microinstabilities. 2. BASIC
THEORY OF LOW-FREQUENCY ELECTROSTATIC MODES:
2.1. Fundamental considerations: 2.1.1. Ordering;
2.1.2. Equilibrium; 2.1.3. Perturbations; 2.2. Mode structure:
2.2.1. Radially local analysis — 1D; 2.2.2. Radial analysis —
1D; 2.2.3. Two-dimensional problem; 2.3. Finite beta
(non-electrostatic modifications). 3. REVIEW OF LINEAR
EFFECTS ON LOW-FREQUENCY ELECTROSTATIC
INSTABILITIES: 3.1. Collisional and collisionless drift
modes; 3.2. Trapped-particle instabilities: 3.2.1. Trapped-
electron modes; 3.2.2. Trapped-ion modes;, 3.2.3. Collision-
less trapped-particle modes; 3.2.4. Odd modes.
4, CONSEQUENCES OF LOW-FREQUENCY MODES ON
CONFINEMENT: 4.1. Non-linear analysis: 4.1.1. Basic
approaches; 4.1.2. Strong turbulence and detrapping effects;
4.1.3. Fluid models and mode coupling; 4.1.4. Marginal
stability considerations; 4.1.5. Particle simulations;
4.2. Confinement estimates and transport modelling;
4.3, Experimental results. 5. NON-ELECTROSTATIC AND
HIGH-FREQUENCY MODES: 5.1. Shear-Alfvén modes;
5.2. High-frequency modes; 5.3. Alpha-particle-driven modes.
6. CONCLUSIONS.

1. INTRODUCTION
1.1. Motivation and scope of review

In recent years, favourable progress in tokamak
research [1] has stimulated continued interest in the
area of microinstability theory. The basic reason is
the well-known fact that even if the large-scale MHD

* This work was supported by US Department of Energy
Contract No.EY-76-C-02-3073.

instabilities are suppressed, there still remains sufficient
free energy in the confined plasma to drive micro- -
instabilities. These small-scale disturbances, in turn,
can be a serious obstacle to efficient confinement
because they can give rise to “anomalous” transport
levels well above those associated with classical
Coulomb scattering. Hence, it is important (i) to
determine relevant stability criteria for normal
tokamak operation, (ii) to investigate possible con-
figurations and conditions which could inhibit the
onset of the instabilities, and (iii) to obtain estimates
of particle and thermal transport if such modes cannot
be avoided.

It is generally believed that under normal operating
conditions thé dominant tokamak microinstabilities
are the low-frequency drift-type modes. These insta-
bilities are driven by the non-uniformity in both the
spatial distribution and the temperature of the
particles. In the presence of small fluctuating electric
fields, the density and temperature gradients cause
particles to move in an oscillatory manner with a
characteristic frequency called the diamagnetic drift
frequency. At the simplest level, @ (electric field) X B
(magnetic field) drifts of the electrons and ions are
the same. Since this leads to no effective momentum
or energy exchange, there is no instability. However,
when the electrons and ions are driven out of phase
by dissipative processes such as collisions and wave-
particle resonances, the particles can give up energy
to the waves and cause them to grow. The resultant
unstable modes are the dissipative and collisionless
(“‘universal’) drift instabilities. .
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In tokamaks, the available free energy driving the

drift modes is made more accessible by the presence
of a trapped-particle population. This results from the
fact that the inherent non-uniformity in the magnetic
field causes particles to be trapped in local magnetic
wells. These particles, in turn, are more susceptible

to de-stabilizing collisional processes. In addition,
unlike the circulating (untrapped) particles, which are
free to sample many oscillations in a typical wave
period, the trapped particles are constrained to sample
only a small portion of the wave. Unstable modes
associated with these trapping effects were discovered
by Kadomtsev and Pogutse in 1966 and named
trapped-particle instabilities. Since that time, a major
portion of the theoretical investigations of anomalous
transport in tokamaks has been focused on these
dangerous modes.

The status of tokamak microinstability theory up
to 1970 has been extensively reviewed by Kadomtsev
and Pogutse [2,3]. In the subsequent six years, there
have been many important new developments in this
area. These have primarily involved (i) the inclusion
of essential geometric and collisional effects in the
theory of low-frequency drift-type modes and (ii) the
detailed studies of effects related to the use of energetic
neutral beams in so-called two-component tokamak
(TCT) systems. The first has led to significant changes
in stability criteria, growth rates, and estimates of
anomalous diffusion, while the second has stimulated
much interest in high-frequency instabilities driven by
velocity-space anisotropy. In addition, as progress is
made towards reactor conditions, the ratio of plasma
pressure to magnetic pressure is expected to increase.
The resultant “finite-8’’, non-electrostatic effects have
accordingly become an important subject of research.
Finally, it should be noted that computer codes
modelling anomalous transport have been developed
and considerably refined in recent years.

The present review article is intended to survey
significant work in tokamak microinstability theory
covering the period from 1970 through 1977. To
clarify the discussion of these developments and to
view them in proper perspective, the following
approach is adopted. After briefly recalling the
properties of tokamak systems in Section 1.2, the insta-
bilities of interest are classified and their essential
features reviewed in Section 1.3. The theory of low-
frequency electrostatic modes, together with finite-§
(electromagnetic) modifications, is then treated in
some detail in Section 2. This section presents the
basic linear formalism and highlights the fundamental
problems encountered in this area. The numerous
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papers investigating specific linear effects on these
modes are then surveyed in Section 3. In Section 4,
the consequences of low-frequency instabilities on
confinement are discussed. This section includes a
review of the various approaches to the problem of
determining the non-linear evolution of such modes.
Rough estimates of confinement in the presence of
microinstabilities, the basic features of one-dimensional
computer codes modelling anomalous transport, and
relevant experimental results are also presented in
this section. Investigations of possible high-frequency
and non-electrostatic modes in tokamaks are discussed
in Section 5. Finally, in Section 6, a summary of the
current status of tokamak microinstability theory is
given along with some comments on the outstanding
linear and non-linear problems in this area.

1.2. Properties of tokamak systems

Before discussing the various types of micro-
instabilities which can occur in a toroidal device, it is
helpful to recall a few fundamental features of
tokamaks and the orbits of particles in such systems.
As shown on Fig.1, the toroidal plasma is confined in
a helical magnetic field produced by the superposition
of a strong toroidal field, B;, generated by external
coils, and a poloidal field, By, produced by a current
within the plasma itself. The variablesr, 8, { are,
respectively, the radial position co-ordinate, the angle
in the poloidal direction, and the angle in the toroidal
direction, R and a are the major and minor radius,
and ¢, the rotational transform, is the angle through
which a field line passes in the 0-direction on passing
once around in the {-direction. This last quantity is
also expressed in terms of the “safety factor,”

q(r) = 2m/.=1B{/RBp, which in turn is used in the
description of several basic tokamak properties. First,
the well-known constraint for MHD stability, q(r) > 1,
places an upper limit on the current, I, flowing within
a radius, r, in the plasma. In addition, the location of
the rational surfaces, r=rg, and the magnitude of the
shear in the system are also generally expressed in
terms of q(r). At the rational surfaces, the magnetic
field lines close on themselves, and the safety factor
satisfies the condition, q(rg) = m/n, with m and n being
integers. With regard to shear (i.e. the radial variation
in the pitch of the magnetic field lines), the magnitude
in terms of the shear length, L, is related to q(r) by
the expression, L= [(e/qz)(dq/dr)]_', with e=r/R.

A primary distinguishing feature of charged-particle
motion in toroidal systems is the ‘“‘banana-shaped”
bounce orbit executed by the trapped particles and
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FIG.1. Basic tokamak system: a toroidal plasma confined in a helical
magnetic field consisting of a strong, externally generated toroidal field and a

poloidal field generated by the current in the plasma.
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FIG.2. Schematic of trapped-particle orbits in a tokamak.
Here the banana width isrg =24r.

depicted in Fig.2. Here the bounce motion along the
field line is a consequence of magnetic trapping, and
the radial or ““banana” excursion, Ar, is due to the
cross-field drifts produced primarily by the gradient
of the magnetic field. Since the field is non-uniform
and varies roughly as B=B,(1 -€ cos ), there is a

maximum, B,,,, on the inside of the torus and a
minimum, B_,;,, on the outside. Invoking conservation
of energy, E, and magnetic moment, y, it is clear that
particles with E>uB, ... pass freely along the field
line while those with E <uB,,, will be reflected from
the high-magnetic-field region and become trapped.
The fraction of trapped particles, f1, just corresponds
to the fraction of velocity space they occupy. At

the magnetic-field minimum (8 = 0), this fraction is
((Bmax/Bmin) - 112 (2¢)'"%, and, averaged over the
magnetic surface (i.e. averaged over 9), fy =¢'2. The
mean parallel velocity of these particles is approxi-
mately €'/?v; with v; E(2T/M‘)g2being the thermal
velocity and T the temperature. Noting that the
connection length along a field line between turning
points is roughly qR, the average bounce frequency,
wy,;, can then be approximated by w,,;= €'?vj/qR.
For cross-field drifts the characteristic velocity is the
magnetic drift velocity, which is approximately given
by ¥y, = Ap; (B XVB)/B? with Ap;= [(v}/2) + v}/
and .Qj = (eB/Mc)j. The poloidal or §-component here
is associated with the toroidal gradient drift, and the
radial component with the “banana” drift which
causes the excursion, Ar, shown in Fig.2. Taking

v =V, B /R, this radial half width of the banana orbit
can be estimated by Ar = vy /e, = qu/e” 2 where
p=Y, / €. A much more detailed analysis of particle
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orbits in tokamaks can be found, e.g. in Ref.[4], and
a comprehensive summary of the main features of such
orbits appears in Ref.[2].

For trapped particles, the “effective’ collision
frequency is given by », o= Vj/ €, where y= 47ij2e4
X InA/ [Mjl/2(2'l‘j)3/2] is the usual Spitzer collision
frequency for 90°-scattering, and the 1/e enhancement
factor comes from velocity-space pitch-angle scattering.
Specifically, since deflections much less than 90° can
cause de-trapping, the relevant quantity here is the
time it takes a trapped particle to scatter through the
pitch angle, ©® =tan™! (v, /v,) = €. The appearance
of trapped-particle instabilities requires that this
effective collision frequency be small enough to allow
the trapped particles to execute many bounce orbits
before being collisionally de-trapped. In terms of
the well-known collisionality parameter, v,; EVeff,j/ Wy
the basic requirement here is just v,; <1. Particles
satisfying this criterion are said to be in the ““banana
regime.” At higher collisionality, the trapped orbits
lose their significance because particles on the average
are scattered into passing (circulating) orbits in less
than a bounce period. If the circulating particles can
complete many transit orbits before encountering
Coulomb scattering, then they fall in the *“plateau
regime.” Taking the average connection length of
such particles to again be approximately qR, the
requirement here is just v, <vj /aR. Intermsof v,,
this plateau regime criterion is 1 <y,;< €32, The
so-called ““collisionless” or “universal” drift instabilities
can appear in this intermediate range of collisionality.
Finally, for the collisional or ‘“Pfirsch-Schliiter regime”,
the criterion is »,; > ¥2 | The relevant microinsta-
bilities, which can appear here, are the collisional or
dissipative drift modes. In the absence of micro-
instabilities, the transport in the various collisional
regimes described has been analysed in great detail
[5,6] and has recently been reviewed in Ref.[7].

1.3. Classification of tokamak microinstabilities

It is well known that the primary source of free
energy available to drive microinstabilities in low-beta
toroidal devices is the expansion energy associated
with the density and temperature gradients of the
confined plasma. Under normal conditions, the
velocity distributions common to such systems are
isotropic to a good approximation. As shown in
standard derivations [8, 9], the expansion free energy
can give rise to drift and shear-Alfvén modes. Most
of the relevant tokamak microinstabilities are related
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to the drift branch, which can be analysed in the
electrostatic limit. Non-electrostatic modes associated
with the shear-Alfvén branch can also be de-stabilized
but generally under more restrictive conditions.

The principal categories of drift instabilities are
(i) the collisional or dissipative drift modes, (ii) the
collisionless or “universal” drift modes, and (iii) the
trapped-particle modes. Both the dissipative and
universal-type drift instabilities are characterized by
parallel phase velocities which lie between the ion
and electron thermal velocities, v, <w/k,<v,. At
long wavelengths, the characteristic mode frequencies
are close to the electron diamagnetic drift frequency;
i.e. w=w,,=(mcT,)/(eBrr,) where m is the poloidal
mode number, r is the radial co-ordinate, and
1, = ldinn/drI™" is the density gradient scale length.
Most studies of these instabilities have been carried
out in the slab limit ignoring toroidal effects.

The dissipative drift modes, which are derivable
(3,9] from the Braginskii fluid equations [10], are
primarily de-stabilized by electron-Coulomb-type
collisions, v,, and require ,>k;v,. In the high-
collision-frequency regime, the dominant modes have
long perpendicular wavelengths (k, ~ r,) and can give
rise to a Bohm-like diffusion rate. At lower collision
frequencies, the relevant perpendicular wavelengths
become of the order of the ion gyroradius, and the
resultant diffusion rate exhibits a pseudoclassical-type
scaling [11]. These modes can be further de-stabilized
by the presence of a parallel current along the magne-
tic field [12].

In the “collisionless” regime, where v, <k, v,, the
primary de-stabilizing process for drift waves is inverse
electron-Landau damping. These instabilities are called
collisionless or universal drift modes and can be readily
derived by following well-known kinetic-theory treat-
ments [13—16]. Electron temperature gradients in
the same direction as the density gradients (i.e.
n,=dInT./d In ne >0) canexerta significant stabilizing
influence [16]. The opposite case, n, <0, is
de-stabilizing, but such configurations only occur
under very special situations {17]. Other possible
conditions, which can further de-stabilize these drift
waves, are (i) the presence of impurities and (ii) the
distortion of the Maxwellian electron velocity distri-
bution by the current in the plasma. In the first case,
impurity-driven drift instabilities can result provided
the impurity density gradient and the density gradient
of the main plasma are oppositely directly [18). For
the latter case, current-driven drift instabilities can
become significant if the current-drift velocity, u,,
is sufficiently large. Specifically, the growth rate here



is proportional to the ratio, uq/ve, With v, being the
electron thermal velocity [19].

When radially non-local effects are taken into
account, it was found in early work that the influence
of magnetic shear together with ion viscosity could
stabilize dissipative drift modes provided the shear
is sufficiently strong [3], i.e. if r,/Ls>(mg/m;)"*.
For universal modes it was concluded that the insta-
bilities could be suppressed if the condition
r,/L> (me/mi)mis satisfied [15]. However, it has
been reported in very recent calculations [19a] that,
in the absence of toroidal effects, the collisionless
drift modes are actually always stable. Similar con-
clusions have recently been obtained for the case of
the dissipative drift instabilities [19b]. These results
were derived by ignoring impurity and current-driven
effects and are applicable only in the electrostatic
limit. It should also be recalled that, for highly peaked
density profiles, unstable drift eigenmodes can persist
even in the absence of toroidal effects [14].

In a toroidal system, the relatively simple picture
of drift waves just described remains valid only if the
collisionality of the electrons is high enough to
eliminate trapped-electron effects. The basic require-
ment here is just Vi > 1. If this condition is not
satisfied, then important de-stabilizing effects associated
with trapped particles must be considered. Moreover,
even for v,; > 1, the toroidal contributions from the
V B-drift of the ions can lead to important de-stabilizing
effects in the radially non-local theory.

Since V,j is independent of mass and is proportional
to n; /Tj2, the fact that electron temperatures are
typically higher than those of ions in present-day
experiments implies that the electrons should be the
first to enter the banana regime. The associated
instabilities here are the trapped-electron modes [20].
Basically, these again are unstable drift waves which
are now primarily driven by positive temperature
gradients (n, > 0) together with collisional dissipation.
In addition, they can be further de-stabilized by
finite-ion-gyroradius effects (analogous to the universal
mode) [21] and by both resonant [22, 23] and non-
resonant [24, 25] interactions associated with the
V B-magnetic drift. For sufficiently short wavelengths
(i.e. large k; p;) and for particular profiles, the
VB drifts can give rise to so-called “ubiquitous”-type
drift modes which propagate in the ion rather than
the usual electron diamagnetic direction [24].
Standard one-dimensional radial calculations [26] as
well as two-dimensional treatments including multiple
rational surface effects [27] indicate that the magnetic
shear in tokamaks is insufficient to stabilize the

TOKAMAK MICROINSTABILITIES

trapped-electron modes. However, the reversed
density gradient profiles (Vn -VT <0), which are
possible under certain modes of tokamak operation,
can exert a strong stabilizing influence [22]. Effects
associated with finite $(8 =plasma pressure/magnetic
pressure) and with Landau resonances by circulating
electrons are also found to favour stability [28].

At the higher ion temperatures, where T; is
comparable to T, it becomes possible for both ions
and electrons to be in the banana regime (vi‘, Ve <1).
Since the mode frequency of trapped-electron insta-
bilities falls above the ion bounce and transit
frequencies (wy,;, k; v; <w), trapped-ion effects have a
negligible influence on them. However, additional
unstable drift waves with characteristic frequencies
below the ion bounce and transit frequencies
(w <wy;, kjv;) can now be generated. These insta-
bilities are known as trapped-ion modes [2,3] and are
primarily driven by electron collisional dissipation in
the presence of radial density gradients. They are
usually associated with the electron diamagnetic drift
branch (w « w,.) and can be further de-stabilized by
temperature gradients [29]. Among the more
prominent stabilizing mechanisms are ion-collisional
damping (2, 29], transit resonance damping by
untrapped ions [30], and both bounce {31] and mag-
netic drift [32] resonance damping by trapped ions.
In the transit and bounce resonance cases, the effects
can become unfavourable if the temperature gradients
are sufficiently large (n;>2/3). It should be noted,
however, that for such situations the dominant unstable
branch of the trapped-ion modes is the ion diamagnetic
branch (w « w,;) rather than the usual electron
branch [33]. Both resonant and non-resonant effects
associated with VB-magnetic drifts can be strongly
de-stabilizing for this ion branch. For the special case
of reversed density gradient profiles, the usual trapped-
ion instabilities are easily stabilized [22], but the ion
branch of these modes can persist as residual insta-
bilities with reduced growth rates [33]. Analysis of
the radial mode structure of the familiar electron
branch indicates that radially non-local effects can
reduce the growth rate but cannot effect a complete
stabilization of the modes [34]. Impurity effects can
also exert a significant stabilizing influence [35]. For
example, Landau damping by impurity ions in the
plateau regime can be quite favourable [36]. More
generally, collisions with impurities increase the ion-
collisional damping and reduce the de-stabilizing
effect of electron collisions.

In the limit of very high temperatures where the
plasma can essentially be treated as collisionless
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(Veff, <w<wy, k,v;) the trapped-ion mode evolves
to a fluid-like interchange mode known as the
“collisionless” trapped-particle instability [2, 37].
This is a purely growing, non-resonant flute mode
driven by the unfavourable magnetic drifts of trapped
particles in the presence of radial density gradients.

It is quite similar to the familiar MHD interchange
mode in simple mirror machines, except that in
tokamaks charge separations are severely retarded by
the high dielectric constant of the plasma. Stabilizing
effects can come from radially non-local effects
associated with magnetic shear [38] and from impurity
effects [39]. A more obvious source of stabilization

is the reduction or elimination of the regions where
the average magnetic drifts are unfavourable. This
can result from finite-beta effects which generate a
diamagnetic well {40] and also from a vertical
elongation of the plasma cross-section [41]. Although
the rough estimates of diffusion for the modes indicate
a rapid Bohm-like scaling, the actual conditions for
their existence are unlikely to be met even in the
reactor regime.

Two basic features common to the instabilities
covered in the preceding discussion are that the asso-
ciated perturbed potentials are well extended along the
magnetic field line and that such potentials have
predominantly even symmetry around the field
minimum (B,;,). In contrast to the first characteristic,
a class of trapped-electron instabilities, which are
strongly localized along the field line by ion magnetic
drift effects, have also been considered [42]. Although
the growth rates here are generally smaller, these
modes are far less susceptible to the stabilizing
influences of shear and Landau damping by circulating
electrons. With regard to the question of symmetry,
trapped-particle modes with odd symmetry around
the field minimum have been analysed in the collision-
less (Veff’ j < w) limit [43, 44]. These instabilities are
driven by inverse Landau damping in the presence of
positive temperature gradients which must fall in a
very narrow range, 2/3 < 0 <1. Electron modes of
this type have been found with characteristic fre-
quencies close to the average electron bounce frequency,
Wye, and typically short wavelengths, k, o, > 1 [43].
Ion modes are found to occur at longer wavelengths,
kjp; <1, with characteristic frequencies close to the
average ion-bounce frequency [44]. Since the electric
field due to odd modes is maximum at B, , the
scattering of deeply trapped particles can be quite
effective [45]. Collisions and radially non-local effects
do not appear to alter the basic features of these
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instabilities [46], which can be further de-stabilized
by the presence of impurities [47].

As noted earlier in this section, the expansion free
energy in toroidal systems can give rise to shear-
Alfvén modes as well as the familiar electrostatic drift
waves. The presence of such modes becomes signi-
ficant when ﬁp, the ratio of plasma pressure to the
pressure of the poloidal magnetic field, begins to
exceed unity. Their effect on the electrostatic drift
modes has generally been found to be stabilizing
[48, 28]. However, radially local calculations indicate
that for 6p> 1, electromagnetic (non-electrostatic)
shear-Alfvén modes can be de-stabilized by toroidal
effects [49, 50]. In the lower frequency range,

w <v;/qR, such modes can be driven by the inverse
Landau damping of ions in the presence of density
and temperature gradients [49]. At higher frequencies
where v;/qR <w ~v,/qR <wy, (With v, being the
Alfvén speed), the primary driving mechanism appears
to be trapped-electron collisions [50]).

The rapid development of very high-powered
neutral-beam sources in recent years has stimulated
much interest in the use of such beams to heat toroidal
plasmas [1]. Basically, this involves injecting high-
energy neutrals which interact with the plasma by
ionization or charge exchange. The energetic ions
generated by this process then gradually slow down
by collisions with the main plasma ions and electrons.
In addition to plasma heating, it has been emphasized
that for sufficiently high injection energy, the ener-
getic ions can produce fusion energy directly while
thermalizing with the bulk plasma [51, 1]. This
beam-plasma system or TCT (two-energy component
torus) has a required density-confinement-time
product below the “Lawson-breakeven” value, i.e.
n7,<10™cm™3- 5. An extensive review of neutral-
beam-injected tokamak fusion reactor concepts has
recently been presented in Ref.[52].

It is clear that the injection of high-energy neutral
beams will tend to introduce velocity space anisotropy
as another major source of free energy in a toroidal
plasma. The resultant non-Maxwellian ion distributions
can generate unstable high-frequency modes which
could greatly increase the energy loss rate of the
beam [53, 54]. It is found, however, that if the beams
are injected parallel to the magnetic field, the system
should be stable against most high-frequency modes
[55]. Asshown in Ref. [55], detailed calculations,
carried out in the infinite-uniform-medium limit for
representative steady-state distributions, indicate that



ion acoustic modes are easily stabilized by background
ion-Landau damping, and that both shear and com-
pressional Alfvén instabilities can be avoided. In the
latter cases, the coupling between the beam and the
Alfvén waves is effectively suppressed because the
injection velocity is typically less than the Alfvén
speed. With regard to the well-known high-frequency
electrostatic instabilities associated with ion-cyclotron,
lower hybrid, and electron plasma waves, it is found
that typical steady-state distributions lack the required
degree of perpendicular velocity space anisotropy to
excite such modes. If the variation in the guiding-

centre trajectories of the fast ions is taken into account,

ordinary electromagnetic ion-cyclotron instabilities
are also unlikely to appear [56].

When the spatial anisotropy (i.e. density gradients)
in the beam-plasma system is considered, the most
prominent instability appears to be the shear-Alfvén
mode [55, 57]. Here the shear-Alfvén waves are
de-stabilized by Landau resonances with fast ions that

have unfavourable magnetic (VB) drifts. Finite-medium

calculations, which include the spatial variation along
the field line of the beam drift velocity, the presence
of trapped electrons, and radially non-local effects
such as magnetic shear, indicate a reduced but still
substantial growth rate [57]. It has also been noted
that short-wavelength ion-diamagnetic drift waves can
be de-stabilized by resonant interactions with the
beam [55, 58].

For ordinary plasma systems without energetic
neutral beams, the velocity space anisotropy present
is usually insufficient to drive modes of any major
consequence. In particular, the threshold for exciting
high-frequency current-driven instabilities such as the
current-driven ion-acoustic mode cannot be reached
for typical tokamak parameters. However, it has
recently been noted that for the case of a collisionless
toroidal plasma in the presence of an applied electric
field, “slide-away”’-type distributions for electrons
can result. Such distributions are found to be
sufficiently anisotropic to drive high-frequency
instabilities [59].

Just as in the case of the fast-ion population
generated by the injection of energetic neutral beams,
alpha-particles produced in thermonuclear reactions
can also be a prominent source of velocity space
anisotropy. For the case of highly anisotropic
(6-function) a-particle velocity distributions, radially
local calculations indicate that fast magnetosonic
(compressional Alfvén) waves can be de-stabilized by
resonant interactions with trapped a-particles at the
a-particle cyclotron frequency [60]. The growth
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rates of these “thermonuclear cyclotron instabilities”
are found to be proportional to the a-particle density
and can be considerably reduced by a thermal spread
of the distribution [61]. However, even for an iso-
tropic velocity distribution, these modes, along with
the shear-Alfvén modes discussed earlier, can still be
unstable if v, > v, and if the density gradient of the
a-particles is taken into account [62].

2. BASIC THEORY OF
LOW-FREQUENCY ELECTROSTATIC MODES

2.1. Fundamental considerations
2.1.1. Ordering

It is well known that the kinetic-theory analysis of
microinstabilities entails solving the Boltzmann equa-
tion together with Maxwell’s equations. In dealing
with low-frequency, electrostatic modes, this basic set
of equations can be considerably simplified. Specifi-
cally, for mode frequencies, w, much smaller than the
gyrofrequency, §; = (eB/Mc);, it is convenient to
adopt a small-gyroradius ordering [63, 64],

Pj /L=6§ <1, where pj = vj/8Y; is the gyroradius, vj the
thermal velocity, j denotes particle species, L is a
characteristic scale length of equilibrium variations and
6 the smallness parameter. Hence, to determine the
equilibrium (F) and perturbed (f) distribution functions,
the following ordering of terms in the Boltzmann equa-
tion is invoked:

oF o e ly 2 S an R
N

§ 8 1 § (F)

s 1 1 1 s (£)

where E=F +f, € = —V(®, + ®) with ®, being the
equilibrium potential and C(F, F) a collision operator.

The velocity variables can be expressed in terms of
the conserved quantities, the energy per unit mass

E = v2/2 +edy /M

and the magnetic moment per unit mass, u = vi/2B,
where

B/B

—\_f.:V”ﬁ +V:, ’l:l
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V” =1z (2)1/2 (E-uB - e¢0/M) 172
V, =v,(cos¢ &, + sing éz)

€, and &, are any two unit vectors perpendicular to f,

and ¢ is the azimuth (gyrophase) angle in velocity space.

In terms of these variables, the V and V4, operators in
Eq.(1) become

P e 9 e 1 9
= — —_ — - Vn-* =
v a_)_(,+MV<I>O 5E (”VB+V||nVJ-)BBu

PN (| BN 7 2
¢ [08,-8, + 4 e @ xS @
Vi

and

2w L1 TR
VoSV aEfVa gtz MV g B

With regard to the spatial variables, it is convenient to
define them in terms of the magnetic field configura-
tion, i.e.

- ~ ~ A~

B = Bn = B + B, ¢ 4
pX £ )

where

By =Vy=¢

pX X ¢ xVy

¥ is the poloidal magnetic flux, { is the angle about the
axis of symmetry, and By = I/R with I being a constant
and R being the distance to the axis of symmetry.

2.1.2. Equilibrium

For the equilibrium distribution,
F=FO4+prD 4 ..., Eq.(1), to lowest order, yields
aF(O)/a¢ =0, and to first order it gives

(0) (0)

7. vF F

—?-(uva+v”\7no'\7:) é- —aa—u

C a2 g _oppl0) R (05 )

The superscripts here denote the order in §. Averaging
Eq. (5) over ¢ gives
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v”;1\°VF(0) =C[F(0), E‘(O)]

which is satisfied by the Maxwellian solution,

PO ,m) =7,

= Ny () [M/20T () 3/ Pexpl-ME/T (4) ] (6)

where N, is the particle density and T is the temper-
ature. Substitution of this result back into Eq.(5) then
gives

QBF(l)/BCb ___;:.VFM= (3/939) (7:)( ﬁ-VFM)

Here the solution is just F) = Fp + F» , Where the
diamagnetic contribution, Fp, is

F = (1/Q)Vxn-VFM @)

and the gyrophase-independent function, l_:(l), must be
determined from the second-order form of Eq.(1).
Taking the ¢-average of this equation then yields the
usual neoclassical result [6],

~oos(l) > - = (1)
v“n VF + v VFM—C[FM,F ] (8)

with the magnetic drift velocity, VD, defined as

~ ~

v =1 n X(uVB+vﬂ n-Vn + f—/[V(D

v, =

> c 5 O

0

2.1.3. Perturbations

In determining the perturbed distribution,
f=£0) 41 4 ..., the ratio of parallelv to perpendicular
wavenumbers for perturbations is generally treated as
small, i.e. ky/k; =0 (8) with k;p; = O(1). Using this
gyro-kinetic ordering with FO) = Fum in Eq.(1) then
yields, to lowest order, .

(v;-v-na)h=o (10)

30
where h = {0 + Fyme®/T. Here it is convenient to

transform to a co-ordinate system displaced by a gyro-
orbit from a flux surface, i.e.

R LRt

- 1~ -

X' =X - gn X v eWX

¢' = ¢ an



Now Eq. (10) becomes dh/d¢’ = 0, so that
h=h(E,u,s,¥',x") with s being the position co-ordinate
along the field line. Proceeding as before, the specific
form of h is calculated from the constraint equation
obtained by taking the gyrophase (¢') average of the
first-order form of Eq.(1). After some straightforward
but lengthy algebraic steps [65], this procedure leads

to the result

2 ~ LR AR _8‘_)
[-a—E'FVHn VS-S—S— + VD (Vll) 30 + Vx 3y h
_ € 3
=7 Fy 3¢ <¢>¢,-

TN

(12)

where

- 2—"- [ ] 1
(a) NENSVEUVAETRNCE

represents the gyrophase average. Note here that, to
this order, I:'“), the neoclassical portion of the equili-
brium distribution function, does not contribute to
£(0) [65,66]. Equation (12) is then solved for h, and
the result used in the perturbed Poisson equation

2 3 (0)
v = - Z.e. d vEf. 13
) 41r2. ]ejf vj (13)
J

to give the basic mode equation for low-frequency
electrostatic instabilities in a system which is MHD-
stable. Here Z is the charge number and

s d3v=§ /5 ae au a¢ B/|v) |

with o = v”/lv"I being the sign of the longitudinal
velocity. Since the Debye length, Ap = (47N e?/T)V2,
is typically much shorter than the wavelengths of
interest, Eq.(13) just reduces to the familiar quasi-
neutrality condition:

3 . (0)
z.e. [ a3ve. Q) o 14
Jejf Vi (14

with

0) __(z00
£ (2eF, /T) | +h,
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In dealing with toroidal systems, the r,8,¢-co-ordi-
nates, as shown in Fig.1, are commonly employed. The
equilibrium magnetic field can be expressed as

1‘3’=13TéC +B &g (15)
where & and &g are unit vectors in the {- and 6-direc-
tions and Bt and By, are the toroidal and poloidal
components of the field with Bt being typically much
greater than By. For simplicity, it is often assumed
that the device is an axisymmetric, large-aspect-ratio,
(R/r = 1/e > 1), torus with magnetic surfaces which
are circular and concentric. The guiding-centre co-
ordinates given in Eq.(11) can then be expressed as

v 1 .
r Sr-gv, sin ¢

toga- L

6 =6 o v, cos ¢ (16)
o' =0

with ¢’ =¢.

Without loss of generality, we can introduce the
following ansatz for the perturbed quantities:

(qs) (6(r,e> )
£(0)) "~ \F(0) (1 g

X exp (-iwt +1i(md - Zc)) an

where & and (O contain the slow poloidal (6) variation.
This implies that perturbed quantities must satisfy the
requirement, |(1/®) (3$/36)| < m, and that, to lowest
significant order, the 0-variation in ® and f (0) is un-
affected by the guiding-centre transformation given in
Eq.(16).

To obtain the perturbed distribution function, Eq.
(12) must be solved for h subject to boundary condi-
tions ensuring that it be single valued. Regarding this
point, Connor and Hastie [67] have emphasized that
any ansatz considered must satisfy not only the basic
ordering requirement for long parallel wavelengths
(kyp; ~ ) but also the periodicity requirements for 6
and { in the presence of magnetic shear. Periodicity in
the toroidal angle (%) is easily satisfied in the axisym-
metric systems of interest. The boundary conditions in
the poloidal angle (8) are

h(e, iV”) = h(0 + 2, i’V||) (18)

for untrapped particles, and
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h(Bg, 2v) ) = h(0g, +vy) (19)

for trapped particles. Here, 8, designates a trapped-
particle turning point (i.e. the position where v = 0).
In accordance with Eqs (15), (16) and (17), the
function h has the form
h (rl , e L} , E L} )
~ ]
= h(r',0)exp(-ivt +i(me' -2z )]

and

(n+Vs) (3/3s) = (1/Rq) (3/36 +q3/9¢C)

Hence, Eq.(12) can be expressed as

(w-iu—(m-l -1 2
Rqgq E 36

. 9 . ~ '
+.‘L(VDj)r 3 ke(VDj)e—le)hj (r' ,8)
- (& —u
= (22F) ;- ugy)

~ l . .
X<<1>(r' +5 Ve sing ' 9)

Xexp(ikeé v, cos ¢')>¢. 20)

where

h.=(C.(F_.,h.) ),

CJhJ <IJ( M3’ J)>¢

(vD)r and (vp)g are the r and 6 components of VD given
in Eq.(9), E =M;v?/2,

* *
. Zw. [1+n.(E/T, - 3/2
g5 201 (140 (B/T, = 3/2))

*
n. =d4nT./d%nn., w. = (kacT/eBr_).
j nTy/ainng, wy = (kgcT/eBrp)

). = -—dILnnj/dr, nj = NOj

kg = m/r, and m and { are the poloidal and toroidal
mode numbers. It is useful to note here that the
characteristics of this differential equation suggest the
transformation
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B @1)
6, =9
where
o 1
rBj(e) s_/ﬁ do' = Rq(ij)r (22)

Physically, rg;(6) just represents the radial “banana”
excursion of a particle away from a magnetic surface
(atr' =r;). Equation (20) then reduces to an ordinary
differential equation in one independent variable (8,)
and has the form

lw+ij - 1Cj -—I—Rq
x(m-m—i-ﬁ— h. =A 23)
: 507/ 1" 7R

with wp; = — kg (vp;)g and Aj defined as the right-
hand side of Eq.(20).

For &, = 0 the magnetic drift velocity in the
vacuum field limit becomes

v =(UB-+VT|)(S x VB) / (QB)

D

Taking B = B, (1 —€ cos 0) then yields

.=k

2
ij g COS 6(uB+v”)/(RQj)

Since the toroidal canonical angular momentum, P{, is
a constant of the motion for axisymmetric systems,
the expression for rg;(0) can also be simplified.
Specifically,

~ M. -Q..
Pp = MyR(v, - Qg47)
so that
r' -, = [VC - (Vc)l]/QBj

= - Q.
MIRMISUAS
with Qg; = ¢;Bp /Mjc. Hence, from Eq.(21),

This result can now be used in Eq.(23) to express the
factor m —Qq(r’) in terms of r,. Expanding around



r =r, and employing the approximation in Eq.(24)
then yields

~

]
(25)

Y . 9 _
(m+ (le)j—;LCj—ﬁJq-l[m-lq(rl)—l-é-é-l-])h.—A

where (wpj)j, the effective magnetic drift frequency,
has the form

(le)j = (wD cos 6 + wD)j (26)
with

~ _ 2

11]

“p
and q' = dq/dr.

Before proceeding with the analysis of Eq.(25), it is
necessary to specify the appropriate model for the
linearized, gyrophase-averaged collision operator, Cj.
The most general form relevant to plasma physics
problems is the complete Fokker-Planck operator
introduced by Rosenbluth, et al. [68]. However, for
investigating low-frequency toroidal microinstabilities,
it is sufficient to either use reduced forms of this very
complicated operator or to employ much simpler col-
lision models.

In the banana and plateau regimes, the primary
effect of collisions is velocity-space pitch-angle scat-
tering [7,29]. Hence, to a good approximation, scat-
tering in energy can be neglected, and the linearized,
gyrophase-averaged Fokker-Planck operator reduces
to a Lorentz-like operator of the form

: 2
(e/q) (kga /949) [v” v” (vH ) l]

en oo (V2 aamt? o
33 J\E)/3] B N
L 1/2 3
X(A(l AB) —-“)hj 7

where A = u/E is the pitch-angle variable. This implies
that in velocity space the equation for h now simplifies
to a one-dimensional differential equation in A with
the energy variable becoming an explicit parameter.

In the absence of impurities, the collision frequencies
for ions and electrons are, respectively,

vi=viH(z)

and (28)

y _ 4
V. Z4mn.e &nh/M
] J /
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A~

ve=ve[l+H(z)]

Here,

1/2 /2

3
3 (2Tj) ]

is the familiar Spitzer frequency, the function H(z) is
defined as

H(z) = exp(-zz)

1
“1/22

1\ 2 [*? _ 2
+(1_§) ;Vifo dt exp(-t%) (29)

with z = (E/Tj)"2, and both electron-electron and
electron-ion collisions are included in ?¢ [29]. This
form is employed in the more rigorous calculations of
collisional effects on trapped-ion [29—32] and trapped-
electron [69~72] instabilities. Since conservation of
number, momentum, and energy in the collision
operator is not essential to the derivation of the
trapped-particle modes, Kadomtsev and Pogutse [2, 20]
have introduced a much simpler model based on the
BGK operator [73]. This modified “Krook operator”,
which has the form

:)j_ 5\ 3/2
Cihy == 2 (ﬁ) h, (30)
is widely used because it yields collisional growth and
damping estimates within roughly a factor of two of
results using the more complicated Fokker-Planck
form given in Eq.(27) [29, 69]. In the simplest deri-
vation of dissipative trapped-ion modes, the energy
dependence in Eq.(30) can also be ignored [2]. How-
ever, this energy dispersion in the effective collision
frequency is a very important feature in the dissipative
de-stabilization of trapped-electron modes [20].

As one passes into the highly collisional range (i.e.
Pfirsch-Schliiter regime), the conservation properties
of the collision operator become important. Specifi-
cally, with regard to the collisional drift mode, at least
number conservation must be satisfied to derive the
basic form of the instability [9]. For a proper inclusion
of the additional dissipative de-stabilization associated
with temperature gradients, energy conservation is
also required [74]. These properties are, of course,
automatically satisfied if one uses the Braginskii fluid
equations [10]. For kinetic derivations of dissipative
drift instabilities, appropriate forms of the BGK [73]
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and Dougherty [75] collision models have been
employed [76, 74]. In what follows, the formalism
presented will focus on instabilities in the lower col-
lisional regimes, i.e. the banana and plateau regimes.

At low collisionalities, C; can be ignored in Eq.(25),
and an exact solution for h; can be readily obtained.
To do this, Rutherford and Frieman [64] found it
convenient to introduce an integrating factor of the
form, exp (— il},’) with

e fra -

and 8! =m—%q(r,). In dealing with the untrapped
particles, the periodicity requirements for 0 given in
Eq.(18) must be satisfied. Allowing for this constraint
and using exp (— ilg) to integrate Eq.(25) from 0 to

0 + 27 then gives

(w+w,) = sl)(31)

- exp(iIe +2W/2)
(hU) ) g + 27
) 2sin (I /2)
0+ 2'rr 1 01
Xf ————A.exp(-iI ) (32)
M o

with ds; = Rqd@, and (flU)j = flj for untrapped
particles.

For the trapped particles, the appropriate boundary
conditions are given in Eq.(19). Since periodicity in
0 is clearly not a constraint here, it is convenient to
first multiply ] Eq.(25) by exp (iS'6). The resultant
equation for hJ = hj exp (—iS'0) can be solved as
before, except that now Ib is replaced by fb with

P f ds; == (w+u)) (33)

Using the conditions imposed by Eq.(19) and inte-
grating Eq.(25) between the turning points, + 6, then
leads to the solution

~ exp(isle)

(h ). = 3
sin(I_gO)

T3

0 1
X/ l AJ exp(-is 61)

1100

"el Aeo
cos (I 6 )cos(I ) for 06, <8
- 0 e

Ae Aeo
cos (I 6 )cos(I ) for 6, >0
=% %y

with (ﬁT)j = ﬁj for trapped particles.

If a sufficiently simple model for C; is adopted, the
preceding results can be easily generalized to include
collisional effects. For example, the only modification
in (hr); resulting from the use of the Krook-type
operator in Eq.(30) appears in the expression for f}i’.
Here it is adequate to just replace w by w + ivf in
Eq.(33) with vf = (v/e) (E/T)"¥2. The influence of
collisions on untrapped particles in the banana regime
is usually ignored because most of them are relatively
insensitive to pitch-angle scattering. An exception, of
course, are the ones close to the velocity-space boun-
dary layer between trapped and circulating particles.
However, a proper analysis of these effects requires the
use of a more complicated operator such as the Fokker-
Planck form given in Eq.(27).

At this point, it is possible, in principle, to substitute
the results for h; into Eq.(14), the quasi-neutrality
condition, and to write down the basic mode equation.
In practice, however, it is difficult to work directly with
the forms given by Eqs (32) and (34). The most com-
mon approach is to consider the more tractable expres-
sions obtained in the limits where either w/wp ¢ Or
Wy, ¢/w is small. Here wy, ¢ designates the bounce and
transit frequencies with wy, = 27/1p, w¢ = 27/7;, and
the corresponding periods are given by

0
=0
and (35)

Ty Efdsl/v”
U

Note that, at the boundary between trapped and
untrapped particles, 2wy, = |w,l.

For the trapped particles, it is clear that the only
relevant asymptotic limit is |w/wy, | <€ 1. This implies
that factors of the form, i;’, appearing in Eq.(34) are
also small, so that the expression for (frr)j reduces to

o : :

*

~ (w - wy)

(h)_:[Z_e-F - T
T ) T M [w+1v£+ (le 7



(0, ity ¢ )])TL- 36)

where
<q>(0)>¢. z<€>[r'+ (1/Q)v, sin ¢',6]

X exp (ike (1/9‘)\,1_ coSs ¢' >¢q
and the bar denoted the trapped-orbit-average, i.e.

0 1

d A 37
sl IVH‘ @7

Since the parallel velocity of these particles is small
(especially near the turning points, £ 6,), the 8-depen-
dence in v is important here.

In dealing with the untrapped particles, both limits,
jw/wl €1 and |wt/w] <€ 1, are of interest. For
Jw/wil €1, the 12 factors are small, and the expres-
sion given by Eq.(32) correspondingly reduces to

T
7e (w-w')

by, = (2 n

x(<q>‘°)>¢,)UJ (38)

]

— 1
Lw+ ( Dl)U -w. S ]

with the bar denoting the untrapped-orbit-average, i.e.

m
=y = 1 1
(a) =—-—f ds, — A 39)
U Tt - 1 Vll

Unlike the trapped particles, most of these particles
have relatively large parallel velocity. Hence, itisa
reasonable approximation to ignore the §-dependence
in v for circulating particles. This implies that

Ty = 21qu/v”. Since the f-variation in ®© is also
weak,

(<¢(0)>¢')U o <¢(0)>¢

in Eq.(38).

Using B == By (1 —€cosf) and recalling the definition
for the effective magnetic drift frequency in Eq.(26),
the orbit averages can be readily performed to give [46]

2
kev
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where § =1q'/q and the functions, G, (k) and G, (k),
are expressed in terms of complete elliptic integrals.
Here the velocity-space pitch-angle parameter, k, is
determined by

2|<2_—.1+e_1(1—>\)

with trapped particles falling in the range, 0 <k <1,
and circulating particles in the range

1<k<[(1+ a'l)/zll/2

The total function,

H(k) = G1 (k) + 2sG2 (k)

is plotted in Fig.3, and indicates that, to a good
approximation, (wp)y = 0. Hence, the asymptotic

expression for (flU)j given in Eq.(38) can be further
simplified to the form

*
(;1 )___,.(ZE F ____(_ul;w_Tf_) ,<¢(0)>
U3 AT My (s /RQ) )| J ¢’
(41)
o8 Hix) =6, () +2% G, (k)
A_q'r
S=T
~
-04}
06}
-08f
! !
-104 l . L

FIG.3. Velocity-space pitch-angle-dependent part of the
orbit-averaged magnetic-drift frequency, wy, . Here
2k3=1+€t (1-2).
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with S! =m —Rq(r,). For trapped particles,

* A
w_DI = ZEnwj (E/Tj JH(k,s)
with €, =r1,/R and H= 0.6 for §=1 [23].

Before considering the other asymptotic limit of
interest for circulating particles (i.e. |w¢/w| > 1), it is
useful to note that Eq.(32) can be expressed in a more
convenient form. Making the usual approximation
that the 8-dependence of v can be ignored (except in
terms involving [v; — (vj;),]), this equation becomes

ﬁ ) = (@—F (w—w*)exp(iAsine)
u/j T "M T

XE ;n(rl)exp(ine)

n
Xy 3,
p

w—(s+n—p)mt 3
where

S = m-2q(r ),/\_wD/wt

wp is defined in Eq.(26), ot = v"/Rq, and use has
been made of the decomposition

<¢(0)>¢' = 2 én(rl)exp(ine) (43)
n

and the Bessel function identity,

exp (-iA sin 6)z= Z Jp(A)exp(-ipe)(44)
p=-«

In the limit |w¢/w] <€ 1, Eq.(42) can be simplified
considerably. Using the definitions in Eqs (43) and
(44), taking lwp cosf/w| <€ 1, and noting that

E pJp exp (- ip9)
p
= Acos 6 exp(-iAsin 6) 45)

leads to the result
*
~ (w - w.,)
_ ) Ze T -
(hU )j B {_T— Py w l:l

1102

(46)

D" 3
w W or

(L (& v ss) [ ) }j

where ¥p = — (Wp/kg). To arrive at this final form, use
has been made of the fact that Eqs (21) and (22) imply

s =2+ Lorg v sine = @]
1 Il

Terms involving odd functions of V|| have been dropped

from Eq.(46) since they do not contribute to the

mode equation.

In the preceding analysis, the asymptotic forms for
fy have been obtained by passing to the appropriate
limits of the exact solutions. These approximate forms
can also be calculated directly by using w/wyp ¢ or
wp t/w as a smallness ordering parameter in Eq.(25).
This frequently used procedure is quite simple to
implement and is given in detail, e.g. in Refs [64, 65].

A different but equivalent method for deriving the
perturbed distribution function involves performing
the total time integration along the unperturbed
guiding-centre orbits [78, 46, 27]. For the Krook col-
lision model of Eq.(30), Eq.(25) can be expressed as

A

t
hj = - 1[00 dt,A expl-1i(w + 1\)f)(tl -t)]

Xexp[i(mg, - 2z,)-i(m6 - Lz)]  (48)

1 1

where 6, = 0(t,), &, =¢(t,), A is the right side of
Eq.(20), and

(mel - lcl) - (md - 27)

t

1
- . de )

with q(rg) =m/€ and

(vp) g = (dg/dt) - q(r') (d8/dt)

M)
The phase factor here can be expressed in the form,

aft, —t) + B(t,), where f(t,) represents a periodic
function of t;. As noted by Coppi [78,46], it is conve-
nient to group the factor, exp [if(t,)] with the time-
dependent part of A, and to then represent the resulting



expression as a sum over harmonics of wy, 1. Using such
decompositions, the time integration in Eq.(48) can be
easily performed to yield

)

A _ Z_e_ _ *
hj —( T FM(U) wT

> (p) : A
) explipw t(e)]
X b,t
w-l\)f+wD -[p+s H (X -A)]wb’t
(50)
where
~(p) _ 1 (0)
R f at, (%),
! T,U
Xexp[iBb t(tl)]exp(—ipwb’ttl) (51

t(e)=fed61qR/VHr =1l-¢,

and H(A -A) =0
c

for trapped particles and H(A;—\) = 1 for untrapped
particles. More detailed derivations of this result are
clearly presented in Refs [46, 27].

2.2. Mode structure

With the forms for the perturbed distribution
function determined, the quasi-neutrality condition
can now be used to generate the basic mede equation.
For most drift waves, the radial structure of such an
equation is strongly affected by the gyrophase-
averaged function, ($(®) )¢’ appearing in hJ Recalling
that

hj Eh_j exp(-iwt + 1(m6"' - 2c') ]

and that the velocity space integration involves the
operation f (2,7’ dé¢, it is clear that one must evaluate
the function,

<<¢(r' +v, %sin ¢',8)
. 1
X exp(lkevl g cos ¢>')>¢.

. 1
X exp(-ikgv, §cos ¢>)>
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where r =1’ + (v|/Q)sin¢’. Without loss of generality,
®(r,0) can be expressed in terms of its Fourier trans-
form, so that

(0)> _ ”
o™ 25 ).

e o]

X dk A (k_)exp(ik r')J (k,v,/Q) (52)

where kiEk§+kf and
A(k )=f dr exp(-ik_r)¢(r,0) (53)
r am r

The second gyrophase average operation then gives

<<¢ >¢, exp (-ikgv, écose)>¢ §<(>¢.>¢
='2“l17,[wdkr exp(lkrr)Jg(]j—s-vi—)

4]

X dr exp (-ik r)@(r,8) (54)

Since finitegyroradius terms are generally negli-
gible for electrons (i.e. J 2 =~ 1), Eq.(54) just reduces to

<<->¢'>¢= bir,0)

for the electron response. For the ions, the radial
differential structure is easily obtained by expanding
T3 (kv /Q) for kevy /S2 < 1. Integrating twice by parts
over r then gives

e

k.v 2 ~
(.2 (kgva 1 3
‘[Jo+( q )JOJ1~2——7]¢>(;¢,9)(55)
5

k5 or

where kgv) /S2 is the argument of the Bessel functions.
For the usual long-wavelength limit, k| p; <1 (i.e.

"kg 0; also small), this reduces to the familiar form

1 kev.:. 2
2\

3% -
8—2']4’(1',6) (56)

X

pe - [l

4(%)
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In addition to the finite-ion-gyroradius effects, the
geodesic or “banana” drifts can also influence the
radial structure of drift waves. These excursions are
particularly important for instabilities, such as the
trapped-ion modes, which have characteristic fre-
quencies below the ion-bounce frequency (w < wy;).
Here the radial mode structure is governed primarily
by the average trapped-ion banana excursion, pg;,
which is always greater than the average ion gyro-
radius, p;. This point will be explained in more detail
in Section 2.2.2.

For instabilities, such as the universal drift modes
and trapped-electron modes, the effect of the geodesic
drifts is weaker because complete ion banana excur-
sions do not occur on the time-scale of interest, i.e.

w > wy;. This fact is evident upon examination of
the basic mode equation obtained in the familiar
limit, (wp t)i <w <(wpt)e. For krp; <1, Egs (36),
(41), (46) and (55), together with the quasi-neutrality
condition, lead to the following two-dimensional (2D)
integro-differential eigenmode equation:

wo[eoso-s(228 ) 2l o)
*
(w-wg)

—< (0 + 0w+

D1

X ( <I>(r,61)exp[is(6 - el)])T>T

*
(w—wT)

i <[w- (S/Rq)VHj U,e P8 67

+ i\)f)

,e

(R GERIREN

[(2 - ab+ 2b2)r0+ b(3 - Zb)l“l]}

+
=
8L.E

and
(hw) o y=t j; ] Svr M v)  (58)

In this equation, I, =1, (b)exp(—b) with I, being
modified Bessel functions

_,2 2
b:kepi/2, T Te/Ti

*
anrn/R, Wy Z 0, S=m- 2qg(r)

and

(Wp) g = =26 0, (B/T )H (k,s)

with H(k,$) given in Fig.3. The contribution from ion-
Landau resonances can be calculated from Eq.(32) and
is given, e.g. in Ref. [27].

In dealing with trapped-ion modes, the appropriate
forms for the density response of ions as well as elec-
trons can be calculated from Eqs (36) and (41). Since
the characteristic frequencies here lie in the range
w <(wyp ¢)j < (wWpt)e, electron bounce and transit
resonances can be safely ignored. The quasi-neutrality
condition then yields the following 2D eigenmode
equation for these typically long-wavelength (k;p; <1)
instabilities:

*

(L+7)8(r,0) = 3 1. ——nT
joi,e 0 \wtupp+ive
X (& (x,6,) explis (6 - el)])T>T j

*
W =w

T ~
+ T (w- (S/Rq)vII ]>U’i<b(r,6) (59)




with 7, = 1 and 7; =7 =Te/T;. Here the radial
structure is determined primarily by the banana excur-
sions in the trapped-ion response and by the effective
parallel wavelength, S/Rq = [m — 2q(r)]/Rq, of the
circulating ions. v

Before proceeding with the discussion of the local
and non-local analysis of Eqs (57) and (59), it should
be noted that forms for the potential different from
the ansatz given in Eq.(17) can also be employed. One
popular choice [29, 64] involves introducing the
radially local perpéndicular co-ordinate in the mag-
netic surface, q(r)6 —¢, and considering

o « exp{itiq(r)e -zl}

Connor and Hastie [67], however, have emphasized
that such a waveform is not periodic in # away from a
rational surface and can, therefore, only be employed
in systems with very weak shear. To restore periodicity
they introduce an additional phase factor which leads
to the following ansatz for the potential:

8 = 8 (r,8)expl-iwt - if¢
+i2g(r)8 +iS(r)F(6)] (60)

where ® and S(r) are defined as before, and F(0) is a
general function determined by

0
F(8)=f ds' G(e') (61)

with G(0 + 27) = G(0). The ansatz of Eq.(17) corres-
ponds to the choice G =1 or F(0) = 8. Other forms
for G(6) have been employed, e.g. by Coppi and
Rewoldt in their radially non-local analysis of both odd
and even modes [46].

As is evident from Eqs (57) and (59), obtaining
general solutions to the 2D eigenmode equations is a
formidable task. Until recently, the usual approach has
been to make some simplifying assumptions which
essentially reduce the problems to one-dimensional
calculations. The simplest approximation, of course, is
to consider the local limit where the mode structure in
both r and @ is essentially ignored. This approach is
frequently employed in calculations which seek to
establish the existence of an instability and to empha-
size the essential features of the mode rather than
detailed stability criteria [2]. However, to determine
the influence of non-local effects, such as magnetic
shear, it is necessary to determine the mode structure.
This problem is complicated by the fact that toroidal
effects, which account for the slow poloidal variation
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in <i>(r, 0), effectively couple the radial dependence 'to
different poloidal harmonics, i.e.

¢(0) o« g(r,e)exp(ime)

= exp(imb) M)n (r)exp(in6)
nn

If the toroidal coupling is very weak, the -variation
can be ignored, and the problem reduces toa 1D
calculation for the radial normal modes. In the
opposite limit (i.e. strong coupling), the §-variation is
dominant, and the relevant 1D problem becomes one
of calculating the mode structure along the magnetic
field line. These standing modes, which are extended
in radius and are relatively insensitive to variations in
that direction, are analogous to the quasi-modes
derived by Roberts and Taylor [79]. For the drift
modes governed by Eq.(57), the degree of toroidal
coupling is determined primarily by the magnitude of
the trapped-electron driving term and the ion magnetic
drift terms compared to the other terms in that equa-
tion. In general, these toroidal factors are neither
dominant nor negligible, so that a fully 2D analysis is
necessary.

2.2.1. Radially local analysis-1D

The general methods for dealing with the
1D radially local problem are best illustrated by
considering the analysis of the dissipative trapped-ion
and trapped-electron instabilities. For the trapped-ion
modes, the usual frequency ordering invoked is
lvi/wl, lw/vl, lw/(wb’t)il= 0O(8) with 8 being a
smallness parameter [2]. This implies that, to lowest
order, Eq.(59) reduces to the following integral
equation: )

(L+7 10 (6)exp(-is8)

*
-0 )
=<———_% (¢<e)exp(—ise))T> 62)

(w - wDi) T

where wp,; = (wp, ), » and the radial dependence has
been dropped. The solution to this equation deter-
mines the mode structure along the field line as well

as wy, the lowest-order mode frequency. These

results can then be used in a straightforward application
of perturbation theory to calculate the first-order
contributions accounting for electron collisional
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growth, ion-collisional damping, and ion Landau
resonance effects [29, 31, 32].

Following the variational procedure introduced by
Rosenbluth, et al. [29], Eq.(62) can be expressed in
a quadratic form:

T+ (w*/wo)
)\0 Z —
1+r1
2
f ra de/B(fl/B ar8lay(0)/(1 —xs)l/zL(x)])
1/Bmax
1/8_.
Pnin g, a2 (\)/L(0)
1/Bmax
where (63)
8
L(X) = 2Rq f_eo de/ (1 - AB) 172
0

is the trapped-particle connection length, the magnetic
drift term has been neglected for simplicity, and

(7 )(2ra)

8(6)exp(-ise)
de
(1 - 3)L/2

ao()\)

x/ %
_eo

It is convenient here to choose a trial function of the
form, ag(A\) = c;+ A+ c3)\2+ ...y With ¢, being
adjustable coefficients. Since it is well known that
the growth rate is roughly proportional to ew? v [2],
it is clear that the coefficients in the trial function
must be chosen to minimize A\, in Eq.(63). This leads
to a matrix equation which can be easily solved
numerically to give w, and the coefficients c,. With
ao(\) thus determined, the mode structure along the
field line can be obtained by inverting Eq.(64). The
results of this procedure indicate a moderately
ballooning-type structure centred around the magnetic
field minimum with a functional dependence given
roughly by

(64)

d(8)exp(-ifge) «1 + cos 8

Since the collisional and resonant contributions are
first-order effects, they can be analysed individually
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within a perturbative framework. To lowest order,
the perturbed distributions leading to Eqs (62) and (63)
vanish for the electrons and the untrapped ions. For
the trapped ions the appropriate form is given by

2(0)
h’l‘

=(e/T) FM[(m-w;)/w]E:bexp (-ise )JT 65)

In calculating the first-order collisional effects, these

results together with the solutions to Eq.(63) can be

used to reduce the basic equation for ﬁj [i.e. Eq.(25)]
to the following form:

(Tl )-(mo - wT*j) a, ())

\3/2
(T 2 jr;
21\)(E) S ( B Rgdea (1

1]
—

172 o
AB) 9N )] (66)

J

with h= R+ and the right-hand side of this
equation coming from the trapped-orbit average of the
Fokker-Planck operator given in Eq.(27). Solutions
here must satisfy the velocity-space boundary
conditions: (i) ﬁj = 0 at the turning points (\=1/B ,,,)
to ensure that the function connects continuously to
the untrapped region; and (ii) aﬁj /OX remains finite at
A=1/Bax (i.e. far from the turning points).

For the electrons, h =h{" and Eq.(66) can be
directly integrated subject to the boundary conditions
described. We can then simply use the resulting form
for f\e to show that the electron collisions lead to a
growth rate proportional to ew?, {ve [30, 29]. For
the ions the problem is complicated by the fact that
the substitution of h{®) into Eq.(66) leads to a logarith-
mic singularity. Specifically, the ion-bounce period
appearing in h{*) diverges logarithmically in the
boundary layer where X approaches 1/B,,,. To
resolve this difficulty, Rosenbluth, et al. [29] intro-
duced a trial function which approaches zero more
rapidly than 1/In[A - (1/B,4)] in the boundary layer
but reduces to the unperturbed solution, ay (), away
from it. The function

ag() (1 +expl-alr - 1/ 1Y)



satisfies these requirements, and, as shown in detail in
Ref.[29], the coefficient « can be evaluated by a
variational procedure. Results of this analysis lead to
an ion-collisional damping rate proportional to
—(vi/e)”2 {In (vi/e)”2 17 instead of the more familiar
- (v/€) coming from the simple Krook model.

instead of the more familiar - (v;/€) coming from the
simple Krook model.

To calculate ion Landau resonance effects, it is
convenient to employ the exact solutions for flj, given
in Eqs (32) and (34). The resonant terms are first-
order quantities which come from the imaginary part
of these functions. This imaginary part, together
with the lowest order ﬁgo), are then substituted into
the quasi-neutrality condition. Operating on the
resultant expression with

~%
f Rgd6eo /B

gives a quadratic form which can be perturbatively
expanded to yield the appropriate Landau damping or
growth. This procedure is explained in detail in

Refs (31, 32]. In general, it is found that the Landau
damping (or growth) rate for bounce {31] and transit
[30] resonances is comparable in magnitude if

IS|= Im=-Qql=1/2 in the circulating response. Both
effects scale roughly as

Y

p &~ (1- l.5ni) (wo)4 (qR/el/zvi) 3

[29-32].
For the trapped-electron modes, Eq.(57) in its
simplest radially local form can be expressed as

(Cs)z a2
wgR ae2

Xd(8)exp(-iSH) = r(%(e)exp(—ise))
T

w
- =%
[l +b6+

N[

w

67)
where
- 1/2 2 ® ==1/2
Nze ( 1/2)_[ dE E
Ll 0
_ (= w )
X exp(-E) T
{w _wDe + lvf,e)
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2 _ 2
ps = (CS/Ql)

Heret™!= T;/T, has been taken as very small, and
ion-magnetic drifts and circulating electron resonances
have been ignored. If the contribution of the ion-
acoustic term,

(cs/wqR)282/862

is much less than the trapped-electron driving term, I,
then Eq.(67) reduces to the same general form as the
integral equation for the trapped-ion instability given
in Eq.(62). The same variational procedure can thus
be applied, and the result is again a ballooning-type
mode structure centred around the magnetic field
minimum, i.e. for S=0, &(0) « 1+cosf. For this
ballooning or ‘“‘strong-coupling’ limit, the de-stabilizing
driving term, I', can be moderately enhanced (less
than a factor of 2) over its simple local value.

As the magnitude of the ion acoustic term becomes
comparable to or larger than I', it is necessary to deal
with Eq.(67) in its complete integro-differential form.
A common approach to this type of problem is to use
the Fourier decomposition,

~

d(0) =1d_exp(ing)
oon

to generate a matrix equation which is then solved
numerically. Following this procedure, Liewer, et al.
[80] found that in the weak ion-acoustic limit the
trapped-electron term generates a strong coupling of
the Fourier components which leads to the ballooning
result of the variational calculation. However, as the
ion acoustic term becomes dominant (i.e. ‘“‘weak-
coupling” limit), the ballooning effect is correspondingly
eliminated. In earlier work, Kadomtsev and Pogutse
used this same numerical technique to calculate the
ballooning mode structure of the collisionless (inter-
change) trapped-particle instability in the radially
local limit [3]. As a final point, it should be noted
that a more rigorous treatment of collisional effects
for the trapped-electron modes can be readily carried
out by using the procedures just described in the
dissipative trapped-ion mode calculations [29, 81].
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2.2.2. Radial analysis-1D

If the toroidal coupling of the poloidal Fourier
components is not taken into account and the
0-dependence in ) exp(-iSO) is ignored, the drift-wave
mode structure problem effectively reduces to a
1D radial eigenmode calculation. Since @ is no longer
a function of 8 in this limit, the parallel wavenumber
is given by k= S/Rq=[m- 2q(r)]/Rq. For the
collisionless drift and trapped-electron insta-
bilities, the ion acoustic term (« kzH c?) affects the
mode structure very strongly. The usual approach is
to expand around a reference mode rational surface,
I, and then to express Eq.(57) in terms of the dimen-
sionless radial variable,

X = (r—rs)/ps, with Pq ECS/Qi
The radial factor in k; is now given by

] ~
S=- Qg (r—rs) > - keps SX

with §=rq’/q. In terms of the shear length,

Ls = [ (e:/q)d!an/dr]nl

this leads to the familiar form
k“ = -kepSX/LS

Hence, Eq.(57) reduces approximately. to

E)X2

~

+B—(kGDS§)ZCx2] & (X)= -R(x) 4 (x) (68)

where BEB-T, A, B, and C are defined in Eq.(57),

- R(x) is the untrapped-electron response on the
right-hand side of that equation, I' is defined in Eq.(67)
and ion magnetic drifts are ignored.

The derivation of normal-mode solutions to Eq.(68)
have, in general, followed the procedure introduced
by Pearlstein and Berk [15] for collisionless drift
instabilities. In their analysis as well as in analogous
studies of trapped-electron modes [82, 83], the circu-
lating electron term, R(x), is taken to be a first-order
quantity. Hence, to lowest order, the radial equation
reduces to the Weber equation which has solutions of
the form
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20 = B (o Zx)exp(-0x/2)  (69)
where H,, are Hermite polyndmials,
o =t keps; (Ct/A) 1/2 (70)

and the following eigenvalue condition must be
satisfied:

B-T = g(A/1t)(2n +1) (71)

To better understand the preceding results, it is
useful to note that the left-hand side of Eq.(68) is
similar in structure to the familiar harmonic-oscillator
equation. Since C7/A is usually negative, the propa-
gation potential has the form of an antiwell.
Accordingly, the solutions are primarily oscillatory in
character with the oscillations becoming very rapid as
the distance from the reference rational surface
becomes large, i.e. the factor o in Eq.(69) is primarily
imaginary. The usual local dispersion relation for
trapped-electron modes [20, 23] can be easily recovered
by setting the left-hand side of Eq.(71) equal to zero.

In Eq.(70) the sign of o is determined by the proper
radial boundary conditions. As pointed our by
Pearlstein and Berk, the relevant physical picture is
one of waves carrying energy away from the radial
location, where the mode is unstable, out to a region
where the energy can be absorbed by ion-Landau
damping. Although it is necessary to specify this
energy sink in the physical picture, it need not be
included in the actual equation analysed. This is
because the important shear damping effects result
entirely from the outward propagation of the drift
wave. Comparison of the solution given in Eq.(69)
with the eikonal form yields, for n=0,

¢ (x) = eXP(-ox2/2) =exp(ipg f dx kx)
which in turn implies that

lkx =-0ox = 11 (kecsx/mLS)

Hence, the choice of outgoing wave boundary con-
ditions (i.e. vy = dw/dk,>0 with x >0) indicates that
the upper sign must be taken in Eq.(70). With ¢ thus
determined, the right-hand side of Eq.(71) gives

the shear-stabilizing contribution, which can be
approximated by

-i(rn/Ls) (w*/u)) (2n +1)



Hence, the eigenvalue equation becomes
B - T =-ilr /L) (w,/w) (2n+1) (72)

However, to treat the magnetic drift effects in I’
properly, Eq.(71) cannot be reduced from its trans-
cendental form, i.e. the eigenvalues must be calcu-
lated numerically {22, 23].

The untrapped-electron response, R(x), can be
expressed in terms of Z({,), the plasma dispersion
function [84], with
S w/kH v, = (wb )/ (ke Pg VeX)

This term accounts for the de-stabilization of collision-
less drift waves and has the form

R(x) = (1= 2%) £2(z)
w 2 1
- —w& ﬂeC(C +(g° - E)Z(E,)) (73)

with { = here. Note that for the usual limit of
interest, lfe <1, the Z-function can be approximated
by in'/2[84]. For trapped-electron modes this resonant
effect can be stabilizing {28]. However, in the absence
of collisional broadening [70—72], the velocity space
of the resonant electrons is greatly reduced when
trapping is taken into account. Allowing for the
trapped-particle boundaries in velocity space, we can
perform the appropriate integrations to obtain the
result [28]:

_ oW o
R(x) = (1 —;);[zm z(z)}

-(22- 3 Z(E>} (74)

with f = §/(e)”2. In arriving at this approximate form,
it is assumed that (1-B/Bp,y) = (€)"'>. As shown, e.g.
in Ref.[16] for collisionless drift modes and in Ref.[72]
for trapped-electron modes, the contribution from
R(x) has usually been calculated using standard pertur-
bation theory. Rosenbluth and Catto (85] have
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analysed the collisionless drift mode problem with a
more rigorous, non-perturbative approach. They con-
cluded that the perturbative calculation is really quite
accurate. Numerical solutions obtained by Gladd and
Horton [16] also support this conclusion. However,
it has very recently been found that these results

(85, 16] are applicable only if one retains just the
imaginary part of the Z-function. In fact, if the com-
plete Z-function response is used, numerical results
have indicated that the universal eigenmodes cannot
be de-stabilized in the slab limit [19a]. Finally, as a
general comment on all of the preceding 1D radial
calculations, it should be emphasized that, in a strict
sense, the 1D radial model used is valid for toroidal
systems only if the mode rational surfaces are well-
separated and if VB-drift effects are negligible. Speci-
fically, the effective turning point,

xp = [(L_/r) (w, /w)1t/?

cannot exceed the spacing between rational surfaces,
Ars = LS/(keRq)
ie.
1/2
k <
oPs (rn/qR)(Ls/rn)

For trapped-ion modes, Eq.(59) in the 1D radial
limit reduces to

(L+1-T)o(r)

(0 = wn)

w-=-Ww ~

—T<———T——(¢(r)> >
wtw +iv T T

D1 f

.1
- _TRi(r)$(r) (75)

where

h) : ~
Ri(r) = 1—(—’3)4:[2(;) —z(z;)]

(0]

W, . ~
*1 2
T “i’{‘"““‘(g B

D=

)Z(c)
_(22 _ %_)Z(g)] (76)
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Here
4 zm/k” vi,fa = c/(r-:)l/2
k” =[m - 2q(r)1/Rq

and untrapped-ion banana excursions have been
neglected. As noted earlier, the dominant radial
excursion here comes from the average trapped-ion
banana drifts. The fact that the orbit average on (1)
is to be performed at constant r,, implies that

(g(r)) =(l+ (r—rl) 5—%

_ 2 ~

1 2 3

NEYCEEN —2) 3(r)) (77)
Brl

where (r-r, ) represents the banana excursion and
Ik, (r-1y)l is taken to be small. Transforming back to
the r-frame, and operating on Eq.(75) with

fdG/B

then leads approximately to the result

2 32 . '
(pBi L Q(r,w)) o(r) =0 (18)

where
Q(r,w)

z - ri(l+f -t
i

for (rq'/q) = 1, T is defined in Eq.(67), and

. 172
pBi = piq/E

is the average banana width. The local dispersion
relation just corresponds to Q(r,w) = 0.
At this point it is useful to recall that the ordering,

lw/(wb,t)il <<1

impiies that ion transit resonances are strong close to

a reference mode rational surface but become negligible
away from it. This, of course, is just opposite to the
situation for collisionless drift and trapped-electron
modes. For the trapped-ion modes, there is no term

in the effective radial potential, Q(r,w), analogous to
the ion sound term. In fact, in the absence of
untrapped-ion resonances [i.e. neglecting R;(r)], Eq.(78)
exhibits only one turning point. By postulating
appropriate boundary conditions at large r to provide

a second turning point, Jablon, et al. [86] and Ross

and Horton [87] have obtained radially non-local
modes using the familiar WKB method. However, as
noted in Ref.[87], the presence of magnetic shear
implies that the ion transit resonances, which are
strongly dependent on k;(r), must be taken into
account.

For finite values of shear, the non-local modes can
now extend over a number of rational surfaces (rg).
Close to such surfaces, the strong ion-Landau damping
forces narrow peaks in the effective radial potential,
Q(r,w). Gladd and Ross [34] have solved this more
realistic problem by applying standard numerical pro-
cedures. They found that the peaks in Q(r,w) cause
strong reflection, which produce standing waves with
nodes close to the rational surfaces. These are spaced
at intervals roughly given by (Qq’)_l. It is also
emphasized that since the parallel phase velocity
exceeds the thermal velocity close to rg, the resultant
ion-Landau damping can remain a stabilizing effect
even in the presence of large temperature gradients.
This, of course, differs from the usual transit reso-
nances away from rg, which require ’7i<2/ 3tobe
stabilizing [29, 30]. It is also noted that, in contrast
to earlier work [87], the eigenvalues are found to be
nearly independent of the outer boundary conditions.
A typical picture of the effective radial potential,
Q(r,w), and the corresponding eigenfunction are given
in Fig.4.
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FIG.4. Typical radial potential, Q(r,w ), and corresponding
eigenfunction, ¢ (r), for the dissipative trapped-ion instability.
Here x =r/a with a being the total plasma radius (or radius at
the limiter).

2.2.3. Two-dimensional problem

As noted earlier, the 1D calculations described in
Sections 2.2.1 and 2.2.2 have limited applicability
because the mode structure of drift waves in a torus
is essentially two-dimensional. Up to the present
time, owing to the obvious complexity of the problem,
there have been no fully 2D calculations of the trapped-
ion instability. However, significant progress in
analysing collisionless drift modes [88] and trapped-
electron modes [27, 89] within a 2D framework has
recently been reported. For the remainder of this
section, attention will, accordingly, be focused on
Eq.(57).

Using a simplified model equation in which reso-
nance effects are ignored, Taylor [88] addressed the
question of how much non-uniformity (i.e. 6-variation)
in the magnetic field strength and shear are required
to nullify the stabilizing influence of shear on
collisionless drift waves. The equation analysed is
similar in structure to the left-hand side of Eq.(57).
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Although the modulation in shear strength over the
magnetic surface can be large in a device like the
Levitron, it is generally a small effect in tokamaks and
will not be considered in what follows.

If the toroidal coupling effect associated with the
trapped-electron term is ignored along with all transit
resonances, the 2D mode equation can be expressed as

1. 3% A 2):
[__A_B_2+ B - C(j-—ax) }bj(x)

T Ix

l ~ ~
+ 3 D[®j+1(x) + <I>j_1(x)

1 3 (3 -
* b o P34 (085 ‘x’)] =0
(79)

where the various factors are defined in Eqs (57)
and (68), x =ky psé , and use has been made of the
decomposition

@(x,e) =Z‘Dj (x)exp(ij0)
j

For cases where the toroidal coupling is strong, one
can follow Taylor’s procedure of considering the

limit in which <f>j(x) varies slowly Wit!‘l j- By replacing
®;(x) with the confinuou§ function, ®(x,j), the
difference terms, ®jy)+®;, in Eq.(79) can be
approximated as derivatives with respect toj [e.g.
<i>j+1-<i> 1= 20®(j)/3j]. Making the change of variables
y =x-(j/a), in the resultant expression then leads to
the result

A 2 A ~
(A 3—5 + B + D - Ca2y2)¢(y)=0 (80)
oy

where

Az (A/7) + (D/2a°) (1 - 28)

This again is just the Weber equation with solutions
of the form given in Eq.(69). The corresponding
expression for ¢ and the eigenvalue equation now
become
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g = oz(C/zT:)l/2 (81)
and
B+ D - F=g£\(2n+l) (82)

Clearly, if D=0, then A= A/r, and the previous one-
dimensional results are recovered exactly.

As noted in the earlier discussion, the outward
radiation of energy by waves, which are primarily
oscillatory, accounts for the shear damping effects.
With the inclusion of the ion magnetic drift terms,
this general picture remains qualitatively correct
provided A also remains negative. However, if

A

A=z (A/T) + (D/2a2) (l—2g) >0 (83)

the form of the effective potential in Eq.(80) changes
from an anti-well to a well, and the resultant modes
become non-propagating. As a consequence, the

shear damping effects are accordingly suppressed. The
basic structure now resembles a “‘quasi-mode” [79],
i.e. the mode can be represented as a sum of degenerate
radially localized normal modes. Each of these com-
ponent normal modes is centred on a different rational
surface (i.e. at X=X, Xpt}, €tc.) and each has com-
parable amplitude (i.e. |l= @111, etc.). In the present
calculation, the fact that A <0 and D/a? >0 in
Eq.(83) indicates that this onset condition for a mode,
which is insensitive to shear and which is localized at
the magnetic field minimum, implies the requirement
that the shear be sufficiently weak, i.e.s <1/2. For
this result to be valid, it is additionally required that.
the strong cQupling approximation be satisfied.
Specifically, from Eqs (69) and (81), the condition
that more than the principal poloidal harmonic is
important implies that lo/a?| <1 with o being positive
and predominantly real. It should also be noted that
in this analysis allowance has not been made for
variations in the equilibrium density gradients. As
pointed out by Taylor, such variations determine the
actual location and radial profile of these “global”
modes [88]. Moreover, if the “global” boundary
conditions are chosen to reflect rather than outwardly
convect energy, the shear stabilization (associated
with the outward propagation) can be eliminated even
when Eq.(83) is not satisfied.

As noted earlier, the trapped-electron term on the
right-hand side of Eq.(57) can also introduce significant
toroidal coupling. Rewoldt, et al. [27] have included
such effects along with the transit resonances of
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both ions and electrons in a fully 2D analysis of the
trapped-electron instability. In their calculation, the
resonant contributions are treated exactly rather than
perturbatively, and allowance is made for the eigen-
modes to extend over several rational surfaces. The
equation analysed is similar in form to Eq.(57) except
that ion transit resonances and higher-order finite-ion-
gyroradius connections

(e p§a4/ar4)

have also been added.

Recalling that the spacing between rational surfaces
is Arg= (29'Y", Rewoldt, et al. expressed the radial
variable in terms of
S(r) =2lq(r) - q(rs)] = (r - rs)/Ars
Since Ary is generally much smaller than typical
equilibrium scale lengths for realistic tokamak con-
ditions (e.g. § =1q'/q = 1), the radial equilibrium
gradients can be taken as constant to a good approxi-
mation. The perturbed potential is then represented
in terms of complete sets of poloidal and radial basis
functions given by

®(8,5)= 2. E L9500 (8) (89
n=0 ]:

where

gj (8) = (2n)—l/2exp(ij6)

h_(5) =M% _(o1/2s)exp (-0s%/2)

M= (n/o)1/27nn!

and o is a parameter (with its real part greater than
zero) which is adjusted to optimize the convergence
of the radial series. This form clearly satisfies the
periodicity requirements as well as the radial boundary
condition, d—>0as S~ +oo, The latter corresponds to
outgoing energy and also allows for localized modes
that spread over a number of rational surfaces. Sub-
stituting Eq.(84) into the mode equation, multiplying
by gj"j (8)h,, (8S), and integrating over § and S then
gives the basic matrix equation, which is solved by
standard numerical procedures [27].
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FIG.5. Real part of the 2D eigenfunction for trapped-electron modes with kyp;= 0.2 (a) and kyp;= 1.4 (b). The poloidal
angle, 8, is zero at the outside of the torus (magnetic-field minimum) and the radial variable is S = (r —ry)/Arg with rg being the
radius of the reference rational surface around which the mode is centred, and Ars being the distance between mode rational

surfaces.

Comparison of the results of the 2D analysis with
those from the 1D radial calculations for representative
cases indicate relatively small variations in the eigen-
values. However, the actual mode structure, as shown
in Fig.5(a), is quite different from the simple 1D
result, i.e. in contrast to the usual 1D analysis involving
only a single rational surface, the eigenfunction is
seen to extend over a number of such surfaces. It
should also be noted here that as an alternative
approach to expanding in radial basis functions, one
can also apply numerical techniques to solve the
linearly coupled radial differential equations directly.
This procedure, which allows the introduction of
variations in the equilibrium gradients, is currently
being developed by Ross and Miner [90].

The radial differential form of the mode equation
treated in the preceding calculations is valid provided
the radial wavelengths are sufficiently long, i.e.,

k.p; <1. Rewoldt, et al. [27] have found that as kg p;
approaches unity, the calculated 2D mode structure
indicates that this constraint is not satisfied. Since
the simplest local calculations [22—24] show that the
maximum growth rates typically appear in the range
kgp; 2 1, a reformulation of the analysis of the radial
dependence in the 2D equation becomes necessary.
Working with the unexpanded form of the ion gyro-
radius factor given in Eq.(54), Tang, et al. [89] have
recently obtained solutions to the resultant 2D integral
equation. They noted that for the general case of
arbitrary k., the r-integration in Eq.(54) can be
analytically calculated as before, but the k -integration
must now be numerically evaluated. Using the basis
functions given in Eq.(84), a matrix equation, similar

in structure to the one obtained for the long-radial-
wavelength (differential) problem [27], is generated.
Hence, the same numerical procedures can again be
applied. The 2D results have indicated that, in general,
the growth rates are smaller than those from 1D
calculations and that this difference becomes more
pronounced as Kgp; increases. In addition, it is found
that, in contrast to the long-wavelength cases, the

2D mode structure at shorter wavelengths exhibits

a strong ballooning around the magnetic field minimum.
This effect is illustrated for a typical case in Fig.5b.
Tang, et al. [89] have noted that the differences with
the 1D eigenvalues and especially the pronounced
ballooning effect are likely related to the enhanced
phase oscillations in the trapped-electron driving term.
In particular, since S is proportional to kg (r-ry), the
phase iS(B—Bl), which appears in the orbit-averaged
potential there can become large if either kg increases

-(i.e. shorter wavelengths) or the distance from the

reference rational surface, (r -1¢), increases.

As a final point, it should be noted that the type of
eigenfunction calculated in Refs [27] and [89] is
degenerate in m, the poloidal mode number at the
reference rational surface around which the mode is
centred. The truncation in the series of basis functions
given in Eq.(84) is dictated by the convergence to a
unique eigenvalue. Although the addition of more
terms in the series of basis functions can lead to a
wider radial extent than shown in Fig.(5), the eigen-
value (and hence the growth rate) is found to be
unchanged to a good approximation. In fact, in the
absence of equilibrium variations, one can construct a
very broad mode extending over the entire plasma [90].
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However, in practice, the radial extent will be limited
by the equilibrium gradients. It should also be pointed
out that the eigenvalue can be modified by a different
choice of radial boundary conditions. For example,
the stabilizing influence of shear, associated with the
outward convection of energy, could be entirely
eliminated by choosing perfectly reflecting conditions.

2.3. Finite-beta (non-electrostatic) modifications

Although tokamaks are basically low-8 (8=plasma
pressure/magnetic pressure) systems, the influence of
related electromagnetic effects on microinstabilities
can nevertheless be significant. For the low-frequency
drift and trapped-particle modes, it has generally been

found that such finite-beta effects tend to be stabilizing.

In particular, attention has been focused on three
separate physical mechanisms, namely: (i) the
diamagnetic or “self-dug” well generated by the plasma
pressure; (ii) the finite-8 enhancement of the non-
concentric shift of the magnetic surfaces; and (iii) the
coupling between drift waves and shear-Alfvén waves.
It has been emphasized in many papers that if the
orbit-averaged magnetic drift of the trapped particles
is unfavourable, the de-stabilization of trapped-
electron [22—-25] and trapped-ion [33] modes can be
strongly enhanced. Moreover, the collisionless (inter-
change) trapped-particle instability is entirely driven
by these drifts [2]. The primary influence of the first
two finite-8 mechanisms listed above is to reduce this
effect. To analyse such processes, it becomes neces-
sary to replace the simple circular concentric magnetic
surface model, used in most electrostatic calculations,
with a model which is appropriate for a finite-§
equilibrium. For a given pressure distribution, this is
determined by the familiar equilibrium equations,

-3
VP=%3’X?

(85)
2 _ 47 2
V x B = c J
and
v.B=0

where B is the pressure and 7 is the current density.
By making simplifying assumptions, such as scalar
pressure and constant current profile, these equations
can be solved analytically [91].

Analysing an appropriate finite-g equilibrium,
Rosenbluth and Sloan [40] found that if 8 is sufficiently
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large, the resulting favourable magnetic field gradient
induced by the pressure of the plasma can nullify the
de-stabilizing unfavourable field gradients associated
with the vacuum magnetic field. However, this would
require values of §>a/R, which is unlikely to be

_ reached. Specifically, since ﬁp (plasma pressure/

poloidal magnetic field pressure) in standard tokamaks
must be kept below the aspect ratio (R/a) to maintain
equilibrium [91], B=p,(a/Rq)*<1. In studying the
achievable range, 8=0[(a/R)?], Glasser, et al. [41]
and Dobrott and Greene [92] have shown that the
combined influence of finite § and finite vertical
ellipticity in the plasma cross-section can generate the
desired favourable gradient effect.

As noted by Shafranov [93], the equilibrium solu-
tions to Eq.(85) generally exhibit a non-concentric
outward shift of the magnetic surfaces (away from the
magnetic axis). Although this effect is weak for low 8,
Newberger [94] has pointed out that such shifts can
become significant if § exceeds a few percent.
Considering a poloidal field of the form

g =B'9) (1+ pc cos 6)
p~°p

with A being the shift parameter, and the usual form
for the toroidal field,

g = glo)

7 . (1 - € cos 8)

the orbit-averaged V B-drift frequency of the trapped
particles, (wp, )1, can be calculated as in the electro-
static case. Here the shift effect is stabilizing in that

it increases the range in velocity space (i.e. in A) where
the drifts are favourable.

In general, one can obtain a reasonable picture of
the stabilizing influence of the finite beta effects just
discussed by simply analysing the expression for
(wp,)rj- However, to study the coupling between the
drift and shear-Alfvén branches, it becomes necessary
to simultaneously deal with the quasi-neutrality con-
dition and the parallel-current equation obtained from
Ampére’s law. Effects associated with compressional
Alfvén waves are usually ignored since <1 for
standard tokamaks. In the simplest local limit, the
finite-8 analysis leads to the well-known dispersion
relation [8]




(86)

with the de-stabilizing driving term (from either

electron resonances or collisions) treated perturbatively.

For

w = (1 g << k|| VA

the coupling between the drift and shear-Alfvén
branches is negligible, and the usual de-stabilizing
downward shift in w by the finite gyroradius term
persists. If, however,

W= Wi > k” VA
the shift can be reversed and the drift modes
accordingly stabiliZzed [95]. In terms of §, this
condition

(for kH * 1/qR)
can be roughly approximated by
B> (r /ar)/(kge,)

Effects due to trapped particles can be easily introduced
in this local model and lead, of course, to a modifica-
tion of the drift branch. Although the finite-8
coupling can be effective in eliminating the analogous
finite-gyroradius de-stabilization of the trapped-
electron modes, it cannot strongly affect the
de-stabilization associated with the temperature
gradient-driven dissipative effects [28]. For trapped-,
ion modes, the phase velocity typically falls far below
v, , and the coupling process is correspondingly
negligible.

Since the degree of coupling between the drift and
shear-Alfvén branches is strongly dependent on k,
a realistic evaluation of this effect requires a radially
non-local treatment. The usual approach has been to
follow the 1D radial analysis outlined in Section 2.2.2.
Taking
k||= kepsx/LS
as before, the effective unstable range for drift waves
is now given by

Vi < (m*LS)/(kest)< VA' Ve
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or

X + X

<X <X,
e A 1

with

1/2

~ ~ . r
X, —Ls/rn, X (me/Ml) Ls/ n

and

XA ~ Bl/

2

Ls/rn
Here x; and x, represent respectively the estimates
for the radial position where ion transit resonances (x;)
and electron transit resonances (x,) become effective.
The position x, is where the coupling between the
drift and shear-Alfvén branches becomes strong and
can lead to stabilization of the drift modes [95]. If
vy =V, then x, 2 Xe, and the unstable range is reduced,
i.e. x, replaces x, as the lower cut-off in the radial
variable [16, 96, 48]. As pointed out by Catto, et al.
[48], the upper cut-off for the actual interaction range
is determined by the effective radial turning point,
Xp= (Ls/rn)” 2, rather than by the ion-Landau damping
point, x; = Ly/r,,.

To obtain the radial normal modes for the finite-3-
modified drift waves requires solving the two coupled
differential equations, which correspond to the quasi-
neutrality condition and the parallel-current equation.
In the limits kj>k} and k3> kj (with ko2 <1),
these equations can be combined into a single second-
order differential equation. Catto, et al. [48] have
obtained solutions to such equations and have found
that the resulting eigenvalue conditions indicate the
finite-B8 terms are usually stabilizing. This favourable
effect can be attributed in part to the effect mentioned
above, namely, the reduction in the width of the
region of interaction of the drift wave with the resonant
electrons from x, <x <xt to x, <x <xp. If poloidal
ballooning effects are ignored, a similar analysis can be
carried out for the trapped-electron modes [28].

As discussed earlier in this section, finite-8 effects
can significantly alter the simple equilibrium configur-
ations considered in the electrostatic limit. For the
remainder of this section, attention will be focused on
finite-§ modifications to the electrostatic formalism
for perturbations. The perturbed electric and magnetic
fields can be expressed as

- _ i 3 =
and 87
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E; = Ux &

with A being the magnetic vector potential. Following
the same procedure as in the electrostatic case, the
basic equation for the perturbed distribution function
can be expressed in the same form as Eq.(12),

except that @ - (A - ¥/c) now replaces & [94]. Solu-
tions for h can also be obtained by applying the
methods introduced in the electrostatic calculation.
The results are then used in the quasi-neutrality
condition, Eq.(14), and the parallel current equation,

2 4q .
_VA = —
=<2

_4n /‘ 3. (0) 88
S Z Zjej d vfj V“ (88)
]

to generate the coupled mode equations.

For <1, the perpendicular components of A,
which give rise to compressional Alfvén waves, can be
ignored to a good approximation. Hence, in Eq.(12)
it is sufficient to replace ® by ®-(A,v,/c). Using the
ansatz of Eq.(17) for A, and ignoring magnetic drifts
for simplicity then gives

(w— iy = kv + i %J aie) ﬁj

() - Dy
where
Al(lo)z (?x”[r' +(1/Q) v, sin¢', 6]

X exp [ike (1/Q)v, cos¢']>¢.

®O has a similar form, and

k”E S/Rq = [m-2gq(r))/Rg

The procedures described earlier in the electrostatic
analysis can be similarly applied here to obtain flj and
the corresponding perturbed density responses. In the
spirit of the 1D electrostatic radial calculations, the
slow poloidal variation in (Ci>, A“) exp(-iS8) will be
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ignored in the following derivation of the coupled
radial mode equations for the collisionless drift and
trapped-electron instabilities.

Recalling the definitions given in Eqs (57) and (68),
the quasi-neutrality condition with the additional
electromagnetic terms can be expressed in the form

2 N
(l A2 4B+ R(x)- (kop §)2CX2)‘1’(X)
T ax2 0"s

~2.,.2 s |1

As noted in Ref.[28], the total parallel current
response can be obtained by operating on Eq.(89)
with

5 ejfd3v
j

This leads to the result
k
25y

2
n,e 2
0 _ w 2 3
T (B 1 +—J‘Lw +Ap; —ar2 )q>(x) oOn

e

with j, being the total parallel current density. The
magnetic vector potential is, of course, related to this
quantity by Ampére’s law, i.e.

2

-2 37 _ 2 - Am
((ps) 2 ke) AH (x) < 3 (%)
92)

Equations (91) and (92) can then be combined to give

D] =

2
) 2 )
—% = b A



+ =% 4+ = i——) d (x) 93)

with

2.2
v, ZB /(41rnOMi)

This result, together with Eq.(90), determines the 1D
radial mode structure of the collisionless drift and
trapped-electron instabilities for a finite-8 plasma.

3. REVIEW OF LINEAR EFFECTS
ON LOW-FREQUENCY
ELECTROSTATIC INSTABILITIES

Many of the important papers analysing specific
linear effects on low-frequency microinstabilities
have already been discussed in some detail in the
preceding section. The purpose of the present section
is to give a more comprehensive review of the work in
this area covering the period from 1970 through 1977.
Here the emphasis will be placed on the main features
and conclusions of the papers rather than on the details
of the calculations. Hence, some of the previously
discussed papers will again be mentioned within the
context of this general survey. Before proceeding, it
should again be noted that alternative approaches to
the basic formalism presented in Section 2 have
frequently appeared in the literature [3, 9, 46, 66, 67].
For example, in dealing with long-wavelength modes
(k 1P < 1), it is convenient to directly perform the
gyro-phase average on Eq.(1) and to then work with
the resulting drift-kinetic equation governing the
distribution of guiding centres [97, 98].

3.1. Collisional and collisionless drift modes

The linear theory of collisional (dissipative) drift

instabilities has undergone very little change since 1970.

Most of the relevant work on this subject has already
been covered in text-book format by Mikhailovskii [9],
in the general review by Kadomtsev and Pogutse [3],
and in a long survey-type article by Rukhadze and

Silin [99]. A particularly useful result from Ref. [99]
is the following expression giving the ion-ion collisional

TOKAMAK MICROINSTABILITIES

contribution at short wavelengths (k, pj > 1) when,
i/wl < 1:

1.25\)i
Fyi= - l(‘T—)(kepiT)

X (l + :%% (1 - 0.7ni)) (94)

This viscous damping effect can be important in
limiting the unstable spectrum of the drift modes at
short wavelengths. Since |vj/w| < 1 is usually satisfied
in cases of interest, Eq. (94) can be readily incorporated
in the calculations described in Section 2. Specifically,
for the collisionless drift and trapped-electron
instabilities, one can simply replace B by B + I'jj in

Eq. (57). The result given in Eq. (94) can also be
reproduced from the formalism recently introduced by
Catto and Tsang [66] for dealing with ion-collisional
effects on drift modes.

In other recent work, Rogister and Hasselberg [74]
have called attention to the possibility that the
temperature-gradient-driven form of collisional drift
instabilities could appear as precursors of the internal
disruptions presently observed in tokamak experiments.
The basic features of such instabilities have been well
documented, e.g. by Rukhadze and Silin [99]. Also,
shear stabilization criteria for current-driven forms of
such modes have been discussed by Callen, et al. [12].
In the present paper, the authors consider very-long-
wavelength modes (m ~ 1) which require an ordering
different from the usual drift-wave ordering. Using the
familiar single-rational-surface, 1D-radial model [15],
they obtained a shear-dependent instability threshold
which leads to results in apparent agreement with the
onset of disruptions in the experiments. However,
more recent work by Chen, et al. [19b] has emphasized
that for such slab model calculations the dissipative
drift waves are actually always stable. This analysis
involves a careful non-perturbative treatment of the
de-stabilizing dissipative electron term.

The collisionless or “universal” drift modes [15]
have remained a popular subject of research over the
past several years. In the early work on these
instabilities, Krall and Rosenbluth [14] considered
equilibrium variations in the density profile and
generated a 1D radial equation by expanding around
the maximum for w,. They found that a restricted
class of unstable exponentially-decaying (i.e. non-
propagating) radial normal modes can exist if the
profile is sufficiently peaked around ws, and/or the
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shear is sufficiently weak. Rutherford and Frieman
[100] subsequently found that the collisionless drift
waves can take the form of convectively unstable
wave packets which are susceptible to shear stabiliza-
tion. In 1969, Pearlstein and Berk [15] introduced
outgoing wave boundary conditions into the radial
analysis and discovered a general class of propagating
normal modes. This calculation, which was discussed
in detail in Section 2, stimulated a large number of
subsequent papers incorporating their basic approach.
It has been noted by Manheimer [101] that the time
domain wave packet analysis of Lau and Briggs {102]
leads to qualitatively equivalent results.

To obtain the shear stabilization criterion for
universal modes, Pearlstein and Berk estimated the
de-stabilizing (radially dependent) resonant electron
contribution by taking its local value at the turning
point, X, L /r ) 172 , and then
balancing it with ?he siear damping term. In the
presence of electron temperature gradients, this is

given approximately by
. ) -

1/2
2

( (k 0Ps )
which in turn leads to the famililalr/ scaling,
l rn/Ls l crit ° (me/Mi)
shear. The evaluation of the resonant electron
response was refined in later work by Mishin [96] and
by Gladd and Horton [16], who applied standard
perturbation theory. This essentially involves an
integration of the non-local resonance over the radial
range of interaction and leads to a moderate reduction
in the shear-stabilizing effect, i.e. the de-stabilizing
term on the left-hand side of Eq. (95) is now multiplied
by the factor &n| Mirn/ meLs | . Mishin pointed
out that the lower radial cut-off here should be

1 LY
4 L

95)

3, for the critical

determined by the condition, k (XA) VAT,
since local analysis [95] indicates that finite-§ effects
stabilize the drift waves for x <xp. Gladd and
Horton numerically evaluated the radial eigenmodes
including both resonant electron and resonant ion
effects and found the eigenvalues to be in good
agreement with the results of the analytic perturbation
analysis. With regard to the finite-3 modifications,
Catto, et al. [48] carried out a comprehensive analysis
of the coupled radial equations obtained from the
quasi-neutrality condition and the parallel-current
equation. As discussed in Section 2.3, the finite-8
effects on the drift waves generally tend to favour
stability.
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The Pearlstein-Berk-type analysis has also been used
to obtain shear stabilization criteria for current-driven
[103, 104] and temperature-gradient-driven [17] forms
of the universal mode [8, 14]. The effects associated
with the presence of a parallel current (along the
magnetic field) can be readily estimated by considering
a shifted Maxwellian distribution for the electrons,
ie. Fe(m x exp{—[vz + (v | - uo)zl/vi}.
Coppi [103] and Rosenbluth and Liu [104] found that
such effects can lead to more restrictive requirements
for shear stabilization. However, the influence here is
relatively weak since the ratio, ug/ve, is usually very
small in tokamaks. Liu [105] and Horton [106] have
also noted that strongly sheared current profiles
(e duy/dx) can drive instabilities which could account
for the anomalous skin effect observed in tokamak
experiments. Because of the large current gradient
required here, Liu, et al. [17] concluded in subsequent
work that a more likely mechanism is the one
associated with drift modes driven by reversed
temperature gradients (ne <0). Specifically, in
Ohmically heating the plasma, the temperature is
expected to be peaked near the plasma boundary.
Since ne <0 here, the resulting enhanced de-stabilization
of the universal mode could contribute to the observed
rapid disappearance of this temperature maximum.

The question of the reliability of the perturbative
approach and of considering only the resonant part of
the electron response was first investigated by
Rosenbluth and Catto [85]. Considering the usual slab
model with shear, they retained the full Z-function
electron response. Their approach involved solving the
resultant radial equation in the limit,| w/ k1 | (x) v [>>1,

(appropriate to the region near the rational surface,
x = 0) and in the limit, ]w/k“ (x)v | <<1

(where the usual outgoing wave boundary condition,

® — 0 as |x| = oo, was invoked). A complicated
eigenvalue equation was then obtained by asymptotic-
ally matching these solutions. The authors made rough
analytic estimates of the eigenvalues and reported that
the earlier calculations appeared to be accurate.
However, it has been reported in very recent studies
that this conclusion is in error. Specifically, Ross and
Mahajan and Tsang, et al. [19a], in independent
numerical calculations, found that the universal
eigenmodes are always stable in a sheared slab geometry
if the complete electron response (full Z-function) is
retained. Of course, for strongly peaked radial density
profiles [14], unstable eigenmodes can again appear.

It should also be remembered that although they are
generally less dangerous than the absolute type, the



convectively unstable form of collisionless drift waves
[100] are likely to persist.

In toroidal systems, the collisionless drift instabilities
can be present even in the absence of peaked profiles.
As discussed in some detail in Section 2.3.3, the
favourable influence of shear can be effectively nulli-
fied if the non-uniformity in either the shear or the
magnetic field strength along the field lines is
sufficiently great. These effects have been emphasized
by Taylor [88] and also by Cordey and Hastie [107].
Introduction of the complete electron response in the
analysis here does not alter the basic conclusions.

Universal modes have also been studied by means
of particle codes. In a so-called “24-D” (x, y, vx, vy,
v,) simulation, Lee and Okuda [108] considered a slab-
type plasma model, which is uniform and periodic iny
and non-uniform and bounded by conducting walls in x.
The magnetic field is perpendicular to x with a small
x-dependent y-component to introduce shear. In the
shearless limit, the simulation results were found to be
in very good agreement with analytically calculated
growth rates. For the sheared cases, the shear
stabilization thresholds appeared to roughly correspond
to the (me/M;)Y3 scaling given following Eq. (95).
However, the simulation has not yet resolved the
question of whether such modes are absolute or
convective in character. It should also be noted that
the radial boundary condition (® = 0 at plasma edge)
imposed here implies a certain amount of reflection.
Even if the reflection is infinitesimally small, it is still
qualitatively different from the outgoing-wave boundary
condition invoked in recent theoretical studies [19a].
Finally, it should be remembered that the particle
simulations describe transient phenomena, while
conventional theories generally deal with steady-state
situations.

In early investigations of impurity effects on
collisionless drift modes, Coppi, et al. [18] found that
instabilities can occur if the impurity density gradient
and the density gradient of the main plasma are
oppositely directed. Using a BGK model, which
conserves number, momentum, and energy, to calculate
the impurity response, Wong [109] re-derived these
results with a kinetic theory which was applied over
the collisional as well as collisionless regimes. At low
collisionalities, the de-stabilization comes from wave-
particle resonances. In the opposite limit, where a
fluid description of the impurity response is appropriate,
the instabilities are driven by collisional dissipation.
This is analogous to the usual qualitative picture of the
drift wave transition between the collisional and
collisionless regimes [9]. In a more quantitative sense,

TOKAMAK MICROINSTABILITIES

it has been pointed out by several authors that the
actual values of the growth and damping rates for
ordinary drift waves can be significantly modified by
using the more accurate Dougherty [110} and

Lorentz [111, 112] collision models. The effects
treated by Wong, as well as the influence of impurities
on a large variety of trapped-particle modes, have
recently been summarized in a comprehensive article
on impurity-driven modes by Coppi, et al. [113].

3.2. Trapped-particle instabilities

The importance of low-frequency microinstabilities
associated with the magnetic trapping of particles in
toroidal geometries was first emphasized by Kadomtsev
and Pogutse in 1966 {2]. Since that time the
investigation of trapped-particle modes has been a very
very active area of theoretical research. As noted in
Section 1.3, these instabilities can be classified very
broadly as (i) trapped-electron modes which require

*

v < 1 and fall in the usual drift

e Veff ,e/wbe
wave range, (wb,t) g Cwc< (mb,t)e ;and (ii)
trapped-ion modes which require both vg <1 and

v{ <1 and fall in the range w <(wp,¢)j. At very high
temperatures, where the collisional effects are entirely
negligible, the trapped-ion modes evolve into the so-
called collisionless or “interchange’ trapped-particle -
modes. Coppi and co-workers have found that in this
very collisionless regime, instabilities with odd
symmetry around the magnetic field minimum can
also appear. Unlike the usual trapped-ion and
trapped-electron instabilities, the basic characteristics
of these odd modes do not appear to be strongly
affected by changes in the collisionality.

3.2.1. Trapped-electron modes

In the original derivation of the trapped-electron
instability, Kadomtsev and Pogutse [20] showed that
by introducing energy dispersion in a simple Krook-
type collision operator [see Eq. (30)], drift waves in
the presence of trapped electrons could be de-
stabilized by electron temperature gradients together
with collisional dissipation. For the usual case of
positive temperature gradients (ne > 0), they found
that the onset of these instabilities requires
Veff,e > W ~ wa. Employing the Pearlstein-Berk-type
1D radial analysis, Galeev and Sagdeev [82] obtained
a shear stabilization criterion for such modés. In
subsequent work, Liu, et al. {21] and Deschamps,
et al. [114] found that even in the absence of
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temperature gradients, the finite-ion-gyroradius shift
of the mode frequency below w, could lead to dissi-
pative trapped-electron modes analogous to the
universal modes. Galeev and Sagdeev’s radial calcula-
tions were extended to include this effect by Liu, et al.
[21] and by Horton, et al. [83]. However, Sauthoff,
et al. [115] have noted that the stabilizing influence
of shear could be ineffective if the diamagnetic
frequency profile is sufficiently peaked. Just as in

the case of universal modes [14], strong peaking acts
to change the effective radial potential from an anti-
well to a well. The radial propagation of wave energy,
essential for shear damping, is accordingly suppressed
by reflections. For general conditions (where the
profile is not so sharply peaked), the toroidal coupling,
studied by Taylor [88] in connection with collisionless
drift modes, can also lead to a suppression of shear
damping. This effect, which requires strong toroidal
coupling, is analysed for the trapped-electron modes
in Section 2.2.3. Using a fluid-type response for the
ions, Horton, et al. [116] have very recently
performed a similar calculation with results in basic
agreement with those given in Section 2.2.3.

In other investigations of toroidal coupling effects,
Tang, et al. [117, 83] used a variational procedure to
determine the ballooning-type mode structure along
the field line. These results were reproduced in
numerical calculations by Liewer, et al. [80], who
added ion acoustic and ion-Landau-damping terms to
the analysis. As discussed in Section 2.2.1, the extent
of the ballooning is dependent on the relative strength
of the trapped-electron driving (coupling) term
compared to the ion acoustic (de-coupling)term. In
general, however, the calculation of toroidal coupling
together with shear effects requires a two-dimensional
analysis. Rewoldt, et al. [27] have investigated this
problem and have obtained 2D eigenmodes which are
centred on a reference rational surface and typically
spread over several neighbouring rational surfaces.
Electron and ion resonances as well as important
magnetic drift effects (which will be discussed later
in this section) have been included in their calculation.
To extend the regime of validity of this analysis to
shorter radial wavelengths, Tang et al. [89] have
introduced an integral equation formulation of the
radial dependence. Details of these calculations and
a summary of the principal results are given in
Section 2.2.3. As noted in the discussion there, the
eigenfunctions obtained in Refs (27, 89] are degenerate
in the poloidal mode number, m. To determine the
“global” radial mode structure, it is necessary to
consider variations in the equilibrium gradients. A
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numerical procedure, which, in principle, allows the
introduction of such variations for the longer-wavelength
(k; pj < 1) modes, is currently being developed by

Ross and Miner [90]. This essentially involves solving

a large system of poloidally coupled radial differential
equations.

The influence of finite-§ modifications on trapped-
electron modes has been investigated by Tang, et al.
[28]. Asindicated by the formalism presented in
Section 2.3, the usual 1D radial analysis leads to a
coupled pair of radial differential equations correspond-
ing to the quasi-neutrality condition and the parallel-
current equation. Since these are similar in structure
to the equation encountered in the collisionless drift
problem, the mathematical procedures introduced by
Catto, et al. [48] were also applied here. The authors
concluded that the finite-§ coupling between the drift
and shear Alfvén branches can be effective in eliminating
the finite-ion-gyroradius de-stabilization [21] but cannot
strongly influence the usual VT-driven effects.

In Ref. [28] the authors have also emphasized that
since ne > 0, the VT-related resonant electron term
can provide a significant stabilizing contribution.

For the familiar slab limit, this stabilizing factor
would be roughly proportional to

1/2
U |meLs/Mirn | 2n |Mirn/meLs |

However, in the low-collision limit, trapping effects
reduce the velocity space of the resonant electrons.
The argument of the logarithmic term in the stability
factor is accordingly reduced to 1/2¢. In subsequent
work, Hinton and Ross [70] and Horton [71] pointed
out that, at higher collisionalities, the resonance can
be collisionally broadened. Using the Lorentz
collision operator of Eq. (27) and dividing the

-electron velocity space into regions of collisionality

bounded by surfaces of constant energy, these authors
found that the enhanced resonant contribution can
approach the slab result given above, even for v, < 1.
More recently, Catto, et al. [72] and Tsang, et al. [118]
have carried out similar calculations, but have
emphasized the importance of distinguishing between
perpendicular and parallel components in specifying
the collisionality boundaries in velocity space (see
Fig. 6). Unlike the earlier work [70], they found that
for vie < 1, the reduction in the resonant electron
response, caused by the presence of trapped electrons,
remains a strong effect, i.e. resonance-broadening
effects are weak. As a final point, it is useful to note
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FIG.6. Schematic diagram of electron velocity space with

the trapped electrons falling in the shaded region. Here

Va= (v..e)‘“ve is just the average velocity at which Va, =1, and
Va, = (Vess /Wy ) is the usual banana regime parameter.

that the basic approach in all the resonance-broadening
calculations cited [70—72, 118] involves working with
the Lorentz collision operator in the drift-kinetic
equation (since electron gyroradius effects are
negligible). A solution for the untrapped-electron
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where p is the transform variable associated with v.
This type of calculation has been carried out to trace
the transition between the trapped-electron and
collisionless drift instabilities.

A number of papers [22—25, 42] in recent years
have emphasized the importance of including magnetic
drifts in the analysis of trapped-electron instabilities.
In earlier studies of collisionless drift modes, it was
noted, e.g. by Coppi, et al. [119], that VB drifts could
lead to instabilities localized in regions of bad curvature.
Yoshikawa and Okabayashi [25] considered these
effects in connection with the FM-1 spherator experi-
ment and concluded that localization in unfavourable
regions enhances the de-stabilization of the trapped-
electron modes. In a more detailed radially local
calculation, Adam, et al. [42] found that the ion VB-
drift term (i.e. the wpj cos 8-term) can lead to a form
of the trapped-electron instability which is strongly
localized along the field line. Unlike the usual modes,
which balloon at the magnetic field minimum, these
modes are localized away from Bpin and have odd
symmetry around their point of localization. The
authors argued that although such modes have smaller
local growth rates, they are also far less susceptible to
the stabilizing influences of shear and circulating
electron resonances (for ne ~ 1). In addition to the
usual dissipative de-stabilization associated with the
VT and finite-ion-gyroradius effects, these modes can
be.further de-stabilized by V B-drift resonances in
the trapped-electron response. This important driving
mechanism was subsequently incorporated into the
analysis of the conventional form of the trapped-
electron modes by Tang, et al. [22] and Adam, et al. [23].

In the simplest local limit (i.e. ignoring radial effects,
poloidal ballooning, ion VB drifts, and untrapped-
electron resonances) Eq. (57) reduces to

l1+7- ( + = -n, = -
distribution can be obtained by a Fourier transform T ! w ) I‘0 i b (Pl I‘0)
method which leads approximately to the following
. 0
response: 31/2 2 f 45 E 1/2
1/2
( n_ (w - w*) i 0
-—U) « f d3v ex (- 2,2 ) *
T RV (W= wg)
n . k e - w-=w
ce U I X exp (-E) ——== e ) (97)
W= Wpe T MVE e
- . \Jep3V2 B
Xf dpexp[—ip(V” - T ) = 37k with E = E/Te and wpe = €, w4 E forrq’/q = 1. This
0 ” ” has the essential features of the dispersion relation
studied by Coppi and Rewoldt [24] and by Adam, et al.
(96) [22, 23], These authors have emphasized the fact that
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the magnetic drifts can greatly enhance the instabilities
at low collisionalities. The unstable frequency range,
W R Veff e, Noted by Kadomtsev and Pogutse [20], is
now effectively extended to zero collisionality. Finding
that the VB-drift-enhanced growth rate could be
comparable in magnitude to the real part of the mode
frequency, Adam, et al. noted that the usual perturba-
tive approach [42, 83] for determining the eigenvalue
is not applicable. They then proceeded to solve
Eq. (97) numerically over a wide range of collisionality
(v«e) and wave numbers (b) taking as typical parameters
€=¢€p =1/4 and ne = nj = 1. The resultant growth
rates were found to be substantially enhanced (e.g. by
roughly a factor of 4 and larger for v ¢ < 0.1). Shear
stabilization criteria, obtained by applying the usual
1D radial analysis, were likewise found to be more
severe and unlikely to be satisfied.

Using € as an expansion parameter in Eq. (97),
Coppi and Rewoldt [24] generated the following
approximate quadratic form

T(l-F0)+1—el/2

51/20) w

“x 172 *+%p
+ oel/2or e 1D 2o (g

mz

where 7; and v ¢ are neglected for simplicity and

wp = €nws. They pointed out that for I’y = €!/?,
this equation indicates the existence of purely growing
(non-resonant) fluid-like instabilites. The authors
further noted that at long wavelengths (i.e. b < 1)

one recovers the usual electron diamagnetic drift modes,
but that at short wavelengths (i.e. b > 1) ion dia-
magnetic or ‘“ubiquitous” drift modes can appear.
Such modes are susceptible to de-stabilization

by bounce resonances and electron collisional
dissipation in the presence of temperature gradients.
In Refs [24, 46] these effects were estimated by
expanding the electron response to third order in
w/wpe. A more detailed calculation of the electron
collisional de-stabilization has recently been reported
by Mikhailovskii [81]. Following the procedures
introduced by Rosenbluth, et al. in the trapped-ion
mode studies [29], he found the criterion for dissipative
de-stabilization is given by ne > 1.5, instead of the
condition, ne > 2/3, derived in the earlier work

[24, 46]. Mikhailovskii has also estimated the finite-8
influence on short-wavelength drift instabilities in the
radially local limit [120]. Taking k = 1/qR, he
concluded that for 8, 2 1/€'/2, the coupling between

1122

the drift and shear-Alfvén branches can readily
stabilize these modes.

In recent work, Ross, et al. [121] have carried out
a more detailed analysis of the relationship between
the short-wavelength “ubiquitous” and fluid-like
instabilities and the usual trapped-electron drift modes.
Considering the short-wavelength (b 2 1) regime, they
found that the non-resonant interaction with the
magnetic drifts can become the dominant de-stabilizing
mechanism for the electron drift modes. However,
with regard to the ion diamagnetic (“‘ubiquitous”)
mode, particular relations between equilibrium para-
meters (¢, €y, Mj, etc.) must be satisfied before the
phase velocity of the electron mode can change its sign
to correspond to the ion diamagnetic direction. It is
also pointed out that although the VB-driven growth
terms tend to increase with b, ion-ion collisions [see
Eq. (94)] can be very effective in damping these short-
wavelength modes at sufficiently high collisionalities
[121, 122]. The various electrostatic effects covered
in the preceding discussion, as well as non-local ion
V B drifts, have been included in the 2D calculations
of Rewoldt, et al. [27, 89].

As pointed out by Tang, et al. [22, 23], the
dangerous influence of the magnetic drifts can be
reduced to a great extent in the presence of reversed-
gradient density profiles. Such configurations can be
generated, e.g. by surrounding the hot plasma with a
“cold” transient blanket of neutral particles (see
Fig. 7). Time-dependent radial-transport code calcula-
tions [123] have indicated that the resultant influx of
neutrals can produce inverted density profiles falling
in the banana regime (v4¢ < 1) and persisting on a
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FIG.7. Schematic density and temperature profiles with
outward plasma density-peak generated by neutral-gas influx.



relevant time scale. The stabilizing influence on the
unfavourable VB-drift resonances is obvious since the
inverted density gradient reverses the sign of w(x wy)
but leaves the sign of wpeunchanged. Detailed
calculations here [22, 23], as well as in subsequent
work [71], have generally indicated a substantial gain
in stability over normal profiles for v,e < 1. However,
in extending the analysis to the higher-collisionality
regimes, appropriate for the universal and dissipative
drift instabilities, Horton [71] has noted that the
inverted configuration can be less stable than the
normal case for vye > 1. This is primarily due to the
fact that the negative values of 7, produced by the
reversed density gradient, enhances the de-stabilization
of the universal and dissipative drift modes.

Finally, it should be mentioned that in the past
several years the elementary form of the trapped-
electron instability (i.e. ignoring magnetic drift and
all non-local effects) has also been analysed with
respect to the presence of impurities [124, 125],
current-driven effects [126, 127], particle simulation
[128], and feedback stabilization [129]. Treating the
impurities in the fluid limit, vi <v; < w/k), Ross [124]
and Bhadra [125] have concluded that such effects
are relatively minor. Bussac, et al. [126] and Coppi
and Rem [127] have considered the effect of a parallel
current. Just as in the case of collisionless drift modes,
the associated effect is generally weak because the
current-driven contribution is proportional to the
small quantity, ug/ve. A particle simulation of trapped-
electron modes in a straight (rather than toroidal)
geometry has recently been reported by Matsuda and
Okuda [128]. These instabilities are analogous to
those experimentally detected in linear systems by
Deschamps, et al. [114] and by Prager, et al. [130].

It is noted that by varying the temperature gradient
between zero and finite values, it is possible to
observe both the VT-driven and the ion-gyroradius-
driven forms of the dissipative trapped-electron
instability. The possibility of feedback stabilization
of low-frequency drift waves has been investigated by
Chen and Furth, who proposed using modulated
neutral-beam injection [131], and by Furth and
Rutherford, who considered the use of modulated
electron sources within the plasma [132]. In a more
quantitative calculation, Sen and Sundaram [129]
have recently confirmed that the neutral-beam feedback
scheme suggested by Chen and Furth can provide an
effective stabilizing mechanism for both trapped-
electron and trapped-ion modes. The basic processes
involve a de-energization of the wave and density
smoothing.
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3.2.2. Trapped-ion modes

In deriving the trapped-ion instability, Kadomtsev
and Pogutse [2, 3] considered the local limit (ignoring
mode structure modifications) and used a simple form
of the Krook collision operator which excludes energy
dispersion, i.e. C; = —»;/e. Subsequently, Sagdeev
and Galeev [30] calculated the de-stabilizing electron
collisions more carefully with a Lorentz model. They
also considered the influence of ion transit resonances
and found the resultant Landau damping to scale

approximately as Yip © ~ w4/(el/2k I vi)3.

These effects, together with temperature gradients

and a Lorentz model treatment of ion collisions,

were incorporated by Rosenbluth, et al. [29]in a
comprehensive radially local analysis. As described

in some detail in Section 2.2.1, a variational procedure
was introduced by these authors to determine the
mode structure along the field line and to resolve the
boundary layer problem associated with ion collisional
effects. It was found that the presence of temperature
gradients is generally de-stabilizing and can change the
effective resonant response of the untrapped ions
from damping to growth if n; > 2/3. In addition, ion-
collisional damping is moderately reduced from vj/ew
to (vy/ew) 2 (an (ewsv)173/2
also become de-stabilizing if n; > 1.75.

In further studies of the trapped-ion modes, Tang
has analysed the influence of ion bounce resonances
[31}], magnetic drifts [32], and ellipticity of the
magnetic surfaces [31, 32]. Following the procedures
discussed in Section 2.2.1, it was found that like the
ion transit resonances, the bounce resonances are
stabilizing for n; < 2/3. The magnitudes of these
effects are also comparable if kj = 1/2qR. With
regard to the magnetic drifts, it was noted that ions,
trapped in regions of good gradient (dB/dr > 0), can
generate drift resonances leading to favourable Landau
damping. Since vertical ellipticity in the cross-section
of the torus increases the region of positive gradient
[41], the stabilizing drift resonances are accordingly
enhanced [32]. Defining the ellipticity parameter as
A =e(k2 — 1)/q?, with ke being the ratio of the major
to minor axes of the cross-section, it was found that
stability can be significantly improved for 0 <A <1.25
with A = 0 corresponding to the circular case and
A =1.25 corresponding to ke ~ 5. This was attributed
to the fact that, in addition to the increased drift
damping, the elliptic configuration gives rise to
enhanced ion collisions in the boundary layer and also
enhances the bounce damping (for n; <2/3) by

and can
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increasing the average connection length of the trapped
ions (31, 32]. As noted in Section 2.3, Newberger [94]
has pointed out that the finite-g-related outward shift
of the magnetic surfaces also enhances this effect.

In the preceding calculations, a constant-current
profile (q' = 0) was assumed in order to facilitate the
derivation of the appropriate equilibrium for an
elliptical tokamak [31, 41]. However, as noted in
Eq. (40) and Fig. 3, the region of favourable gradient
drifts for the usual circular cross-section is effectively
eliminated if rq’/q = 1. Hence, for typical radially
varying current profiles, the Landau damping from
the drift resonances can be negligibly small. On the
other hand, for the inverted density profiles discussed
earlier, this damping is restored and enhanced since
the resonances now involve the trapped ions with
average bad VB drifts, i.e. wp; <0 [22]. As pointed
out in Ref. [22], the reversed density gradients lead
to a strong reduction of the electron collisional growth
term together with a pronounced enhancement of the
various damping mechanisms. The usual form of the
trapped-ion instability should, therefore, be easily
stabilized by inverted density profiles. However, in
subsequent work, it was discovered by Tang, et al. [33]
that a residual instability propagating in the ion
diamagnetic direction can appear for density profiles
which are either reversed or flat. Moreover, the authors
emphasized that for sufficiently large ion temperature
gradients (n; > 2/3), the usual picture of the trapped-
ion mode changes even for normal density profiles.
Analytic as well as numerical solutions to the local
dispersion relation,

1+‘r='I‘+1":.L (99)

[with T defined in Eq. (67) and I';j defined in Eq. (78)]
indicated that for realistic aspect ratios and n; > 2/3,
the dominant modes have phase velocities in the
direction of the ion diamagnetic drifts rather than the
familiar electron direction. Such instabilities are driven
by both resonant and non-resonant interactions with
ions which have average bad magnetic drifts (wp; <0).
Growth rates for these modes were generally found to
be smaller than those for trapped-ion instabilities with
ordinary density profiles and mild temperature gradients
(n; < 2/3). Similar conclusions regarding the resonant
de-stabilization of the ion drift branch have recently
been reported by Tagger, et al. [133].

The 1D radial structure of the trapped-ion modes is
governed by Eq. (78). Since there is no term in the
effective radial potential, Q(r, w), analogous to the
ion sound term, this equation exhibits only one turning
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point if the untrapped ion resonances are ignored.
Jablon, et al. [86] and Ross and Horton {87] have
analysed this problem in the absence of magnetic
shear and assumed various radial boundary conditions
(at larger r) to provide a second turning point.
Radially non-local modes were then obtained by
standard WKB methods. Ross and Horton, however,
also emphasized that it is important to take into
account the influence of magnetic shear. This leads
to a radial dependence in k| which, in turn, implies
that the ion transit resonances must be included (since
they are strongly dependent on k). In subsequent
work, Gladd and Ross [34] retained the transit
resonances (but ignored the drift resonances) in

Eq. (78), and obtained numerical solutions of the
non-local modes. It was found that strong ion-Landau
damping close to the rational surfaces generates
narrow peaks in Q(r, w). As shown in Fig. 4, these
lead to strong reflections which produce nodes in the
eigenfunction, ®. The authors have pointed out that
the growth rates here can be significantly reduced
below the radially local estimates, and that, in contrast
to earlier work [86, 87], the eigenvalues appear to be
virtually independent of the choice of outer boundary
conditions. The influence of strong toroidal coupling,
which would lead to a 2D-type analysis of the trapped-
ion modes, has not as yet been determined.

Impurity effects on the trapped-ion modes have
been investigated by Dobrowolny and Ross [35, 36,
124, 134]. The effective ion charge can be expressed
as Zeff = (n:.L + § Z]2:n1,) /ne , and the impurities
enter as separate ion species in the quasi-neutrality
condition. The authors have noted that the obvious
increase in the total collision frequencies of electrons
and hydrogen ions is clearly stabilizing since it decreases
the dissipative electron driving term ( 1/veff ¢) and

increases the ion damping contribution { c(\)e £E, §

X0 (w/vgep 117272

ities, w <k vi, Dobrowolny [36] has emphasized that
Landau damping on light impurities (i.e. carbon,
oxygen, etc. in the plateau regime) can be a strong
stabilizing effect if the density gradient of the impurities
and main plasma are in the same direction. Analogous
collisional damping effects are found for impurities in
the Pfirsch-Schliiter regime. Of course, oppositely
directed gradients are accordingly de-stabilizing in both
collisionality regimes. At higher phase velocities,

kj vi < w, Dobrowolny and Ross [35] have concluded
that aside from enhanced collision frequencies, the
impurity effects are not significant. Banana regime
impurities have also been considered [36, 134], but

} . At low phase veloc-



their appearance is generally believed to be unlikely
even under reactor conditions. A number of the
preceding conclusions have also been noted by Bhadra
[125] and by Coppi, et al. [113]. As a final point
regarding the influence of impurities on trapped-ion
modes, it should be mentioned that magnetic drift and
radially non-local effects have not been considered.

3.2.3. Collisionless trapped-particle modes

In the very-high-temperature limit where collisional
effects become negligibly small, the trapped-ion mode
evolves [3, 33] into the fluid-like “interchange”
trapped-particle instability [2, 37]. As pointed out by
Kadomtsev and Pogutse [2], this purely growing non-
resonant mode is driven by the unfavourable VB drifts
of the trapped particles in the presence of density
gradients. Rosenbluth [37] noted that the stability
requirement of favourable average magnetic drifts can
be simply expressed as dJ/dr <0, the so-called

“maximum-J” criterion with J=§ dsmv I being

the familiar longitudinal invariant. In subsequent
work, Pogutse [135] and Liu [136] found that the
presence of temperature gradients can lead to further
de-stabilization.

Other investigations of the collisionless trapped-
particle modes have focused on possible stabilizing
effects associated with radially non-local effects,
finite-B, non-circular magnetic surfaces, and impurities.
The usual radial-eigenmode approach was followed by
Liu and Bhadra [137, 38] and by Jablon, et al. [86] in
investigating the radial effects. This problem was also
analysed by Briggs and Lau [138] who formulated it
in terms of the evolution of a localized wave packet.
In general, it was found that the radial effects do not
dramatically alter the linear stability of these modes.
With regard to finite 38, the “self-dug-well” effect,
noted by Rosenbluth and Sloan [40], is stabilizing
but typically quite weak [92]. Callen, et al. [12]
concluded that the influence of non-circular magnetic
surfaces is also negligibly small. However, Glasser et al.
[41] and Dobrott and Greene [92] have emphasized
the fact that the combined effects of finite 8 and
vertical ellipticity can be strongly stabilizing. In recent
work, Dobrowolny and Paravanoe [39] have noted that
the presence of impurities (which are taken to be in
the plateau and Pfirsch-Schliiter regimes) tends to be
a favourable influence but is generally insufficient to
effect total stabilization. As a final point, it should be
remembered that the collisionless requirement,

Veff e < w, is very difficult to satisfy even in the reactor
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regime. Hence, the practical relevance of the inter-
change trapped-particle stability is rather limited.

3.2.4. 0Odd modes

The class of trapped-particle instabilities with odd
symmetry around the magnetic-field minimum has
been extensively investigated by Coppi and co-workers
[43—47]. In the original derivation of these odd
modes, the analysis was carried out in the collisionless
limit [43, 44]. It was pointed out that in the presence
of positive temperature gradients, inverse Landau
damping can give rise to instabilities of this type,
provided the criterion, 2/3 <n; <1, is satisfied.
Coppi [43] noted that in the trapped-electron regime
the odd modes have characteristic frequencies close
to the average electron bounce frequency (w < wpe)
and typically short wavelengths, k| pi > 1. In the
trapped-ion regime, Coppi and Minardi [44] found
that such modes can occur at longer wavelengths,

k, pi <1, with characteristic frequencies close to the
average ion bounce frequency, w < Wp;.

To derive these instabilities, it is convenient to work
with the form of the perturbed distribution function
given in Eq. (50). The basic approach involves
substituting this expression into the quasi-neutrality

*
f Rgde ¢ /B
to generate a quadratic form. For the trapped-ion odd
modes, the electron response is taken to be adiabatic,
and the ion response is expanded in harmonics of the
bounce and transit frequencies to third order in
(w/wp,t)i- The resulting expression is then solved by
standard variational methods [46]. A similar procedure
is used in the trapped-electron regime except that the
ion response is now taken to be fluid-like and the
electron response is expanded to third order in
(w/wb,t)e. Details of these calculations have been
summarized in Ref. [46].

In general, the growth rates for the odd modes are
smaller than those for even modes. However, as
emphasized by Coppi and Taroni [45], these instabilities
can be far more effective in scattering the deeply
trapped particles. This is due to the fact that the
electric field generated by an odd mode has its maxi-
mum at Byin, the position where the trapped particles
are most heavily concentrated. It is for this reason
that these instabilities are also called *“trapped-particle
scattering modes.” Coppi and Taroni have carried out
numerical calculations of single-particle orbits in the
presence of odd modes and have found that the radial
excursions of the trapped particles can be considerably

condition and then operating with
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larger than the usual banana excursion. Here, they
have noted that the average VB-drifts associated with
these so-called ‘“‘quasi-banana’ orbits appear to be
more favourable. In addition, they have pointed out
that the enhanced scattering could also favourably
influence the usual dissipative trapped-particle instabilities
Subsequent work on odd modes has dealt with the
effect of impurities, collisions, radially non-local
effects, and current-driven effects. Impurity-driven
odd modes have been studied by Coppi [47], who
pointed out that both resonant and non-resonant
instabilities of this type can occur. The specific
conditions for their appearance in various frequency
ranges have recently been summarized in Ref. [113].
With regard to collisions and radially non-local effects,
Coppi and Rewoldt [46] have concluded that the odd
modes are not strongly influenced by these mechanisms.
Current-driven effects on both odd and even modes
[including those falling in the higher frequency range,
w > (wp,t)e] have also been investigated (139, 127, 46].
Coppi and Pozzoli [139] have emphasized that in the
usual range, w/k" < vg, current-driven instabilities can
be very effectively suppressed in the banana regime.
This is due to the fact that the current-carrying
(untrapped) electron population tends to be greatly
reduced, with the result that 9F/dv| remains negative
for vj < ve. Asnoted, e.g. by Coppi and Rem [127],
current-driven effects in general become significant
only if the usual requirement that u,/ve be appreciable
is satisfied (with u, being the current drift velocity).
In other papers dealing with odd modes, Callen, et al.
[12] found that a non-circular distortion of the
magnetic surface leads to no significant modifications
of these instabilities, and Coppi and Bhadra [58] have
noted that the presence of odd modes could hinder
the efficiency of the TCT systems discussed in
Section 1.3. More recently, Coppi and Pegoraro [140]
have reported that ion diamagnetic drift modes with
odd symmetry can also appear in the trapped-electron
regime. Finally, it should be mentioned that, in
another recent calculation, Rewoldt, et al. [141] have
found that odd modes with relatively small growth
rates can appear for certain cases in their 2D studies of
trapped-electron instabilities.

4. CONSEQUENCES OF LOW-FREQUENCY
MODES ON CONFINEMENT

4.1. Non-linear analysis

In general, it can be concluded from the linear
theory discussed in the preceding sections that various
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forms of low-frequency microinstabilities are likely
to be present in tokamak systems. Hence, the
determination of the rate of particle and energy
transport generated by their presence is a crucially
important problem. Unfortunately, the non-linear
theory required to study these transport processes is
far less developed than the corresponding linear theory.
This is due primarily to the fact that a general self-
consistent calculation of the saturation amplitudes is
very difficult. Rough.-approximations for these
amplitudes lead, of course, to correspondingly
imprecise estimates of transport rates. In this section,
various approaches to the non-linear analysis of low-
frequency electrostatic instabilities will be discussed,
and relevant papers will be surveyed. Most of the
calculations have been based on simple geometric
models which do not include recent refinements of
the linear theory. For example, possible non-linear
effects associated with finite-§ corrections and with
2D modifications, such as toroidal coupling, have
generally not been considered.

4.1.1. Basic approaches

A common approach to obtaining rough estimates
of diffusion rates involves the use of phenomenological
models based on qualitative arguments. For example,
the diffusion coefficient, D, corresponding to a simple
random-walk stochastic model is just D = (Ax)?/(At)
with Ax being the effective step size and At being the
associated time interval. Approximating this correlation
time with the linear growth period, 1/, and the step
size with a typical perpendicular wavelength of the
unstable spectrum, 1/k {» then yields the familiar result

2

D = v/kg (100)
Another phenomenological argument leading to the
same result involves the notion from strong turbulence
theory that at sufficiently large amplitudes, the unstable
waves can cause the usual straight-line equilibrium
orbits to be strongly perturbed. This in turn gives rise
to an effective cross-field diffusion of the orbits which
is related to the non-linear € X ﬁ drifts in the familiar
continuity equation. In a heuristic sense, a diffusion
coefficient can be introduced here and the resultant
equation can be expressed as

3 __ 9 3,9 2
ﬁ?nj— 3 D ﬁfnj }(JLDnj (101)

At saturation, the viscous damping term, kiD, can be
equated to the linear growth rate to recover Eq. (100).



Qualitative concepts from weak-turbulence theory
have also been invoked to arrive at the estimate in
Eq. (100). Following the usual quasi-linear procedure
[142], an expression for the radial particle flux, T'p,
can be readily obtained by integrating the drift-kinetic
equation over the velocity space and averaging over
the fast time scale of the fluctuations. For a simple
slab model, this gives

- 3,(: € ¥ (0)) _
rpj /d v(lBky(b fj ):-Dé—;no
(102)
with the phase difference between ® and fj(o) providing
the real contribution to I'p;. The anomalous flux
here is ambipolar (i.e. I'pj = ['pe) as a consequence of
quasi-neutrality. Recalling that for drift modes,

(0) . . . .
fi = |e] (¢/Te)(w*/w)Fmiw1thw =w, +1Y,

and noting that the required phase difference comes
from v, Eq. (102) reduces to

2 2
D= |e¢/Te| roy (103)
In estimating e ®/Tel, the most commonly invoked
heuristic argument is that the mode saturates when
the gradient of the perturbations reaches the level of
the equilibrium (ambient) gradients, i.e. when
le¢ % | =1 /k, T [8,82]. Substituting this
back into Eq. (103) then gives the result of Eq. (100).
Another approach leading to the same rough estimate
for the saturation amplitude involves the familiar
concept of free energy. Liu, et al. {17] have calculated
the free energy that would be released by the plasma
if it could adiabatically expand to uniform density
over a radial distance determined by the usual shear-
dependent turning point. Equating this to the drift
wave energy density gives approximately

leo/T | ~ 3 |ed /T | ~1/k x

k

n

For ky = ky = k|, this “upper-bound” estimate of the
saturation amplitude is consistent with the result
from the ambient gradient argument.

The phenomenological models described in the
preceding discussion obviously lack rigor and could
be questioned even on heuristic points. At best they
are useful in providing rough order-of-magnitude or
possible upper-bound-type estimates of anomalous
transport. For a more quantitative analysis, it is
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necessary to turn to a more systematic application of
weak- and strong-turbulence theories. A detailed
presentation of the formalism associated with such
theories is outside of the scope of the present review.

In what follows, the general features of these approaches
(as applied to low-frequency instabilities) will be
discussed.

As noted, e.g. by Sagdeev and Galeev [142], it is
appropriate to apply the theory of weak turbulence to
calculate the non-linear evolution of an unstable
plasma provided the energy in the excited spectrum of
modes is small compared with the total plasma energy.
The basic approach involves Fourier decomposing the
potential, &(X, t), in the Boltzmann equation and
then expanding the perturbed distribution function in
powers of the wave amplitude, <I> . Here the non-
linearity corresponding to the (e X B) of/ dv-term in
the drift-kinetic equation provides the coupling
mechanism which permits the interaction between the
linear eigenmodes of the system. The resulting
expression for the perturbed distribution together
with either Poisson’s equation or the quasi-neutrality
condition then give the basic non-linear wave equation.
Physical processes, which can be considered within
this framework, are quasi-linear wave-particle interactions
and rrlgde coupling. In the first case, Landau resonances
(w = k ' v) can introduce simultaneous changes in the
amplitude of the waves and in the initial particle
distribution which generated the instabilities.
Retaining only amplitude-squared terms, I<I>§|2, in the
non-linear wave ecyation, it is found that these “self-
coupling” (k to —k) interactions lead to so-called
“quasi-linear profile modifications”. This type of
calculation does not allow for energy transfer over the
spectrum. To include such effects, it is necessary to
retain terms of order |®3|* in the perturbation theory.
At this level, one can consider non-linear wave-wave
interactions (three-wave coupling) and non-linear
wave-particle interactions (non-linear Landau damping).
The resonant three-wave _c)oup_l)ing process requires
that w; = w; * w, with k3 =k, * k,, while non-linear
Landau damping requires that the particle retain a
constant phase w;_t)h respect to the beats of two waves,
ie. (wy tw,)=(ky kl) . The former condition is
difficult to satisfy in the presence of strong wave
dispersion, which is usually the situation for the
shorter-wavelength drift modes. In the latter case,
the induced scattering of the waves by the particles
can cause both a transfer of energy over the spectrum
as well as a dissipation of the energy.

To carry out the weak-turbulence calculations
described, the standard procedure [142] involves the
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assumptions (i) that the growth rate relative to the
mode frequency is small, i.e. |yg/wl <1 with
TR = Im (wﬁ); and (ii) that the frequency spectrum
is peak_id around w = wg with width of order s
ie. bk, w)= <I>T(>6(w — wp) with wg being the
solution to the linear dispersion relation. If these
requirements are satisfied, then one can estimate the
saturation amplitude by balancing the linear growth
rate against the rate of energy output from the mode
due either to three-wave resonant mode coupling
(“decay interaction”) or to non-linear Landau
damping (wave scattering by ions). As pointed out,
e.g. by Tsytovich [143], scattering here involves not
only the usual Compton scattering (‘“‘bare” particle
scattering) but also the non-linear scattering associated
with the polarization cloud generated by a moving
charged particle. This shielding cloud can then interact
with electromagnetic waves in the plasma and serve as
an additional source of radiation. Tsytovich has
emphasized that the scattering by the charge of the
screening polarization cloud can be of the same order
as scattering by the main charge. Application to the
drift wave problem leads roughly to the result,
D= (7/ki) (v/w.), with the non-linear dissipation
coming from the wave scattering process. Details of
the weak-turbulence formalism can be found, e.g. in
standard text-book treatments by Sagdeev and
Galeev [142], Tsytovich [143], and Davidson [144].
In practical situations, it is often the case that the
weak-turbulence assumptions cannot be satisfied.
As emphasized, e.g. in numerous papers by Dupree
[145], Galeev [146], and Weinstock [147], the usual
linear particle orbits must be modified in a non-
perturbative fashion when unstable waves grow to
sufficiently large amplitudes. The starting point here
is to again Fourier-decompose the potential in the
Boltzmann equation. However, unlike the weak-
turbulence approach, the effect of the background
waves on the orbits is non-perturbatively retained by
formally introducing an orbit propagator. To render
the calculation tractable, it is necessary to average this
orbit-Green’s function operator, over the phases of
the background waves [145]. Since phase information
is eliminated, the orbit modifications here depend only
on the amplitude of the unstable waves. As
demonstrated by Dupree [145], this procedure leads
to the conclusion that the unperturbed orbits are
effectively modified by a factor, exp [—d(t — t)],
with d being the frequency randomization generated
by the background wave turbulence. Physically, the
exponential damping here can be interpreted as a
collisional damping resulting from the wave-induced
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turbulent viscosity. This effect can be introduced
into the usual local dispersion relation for drift
instabilities by simply replacing w with w + id in the
denominator of the perturbed density responses.
Saturation results when the linear growth rate of the
fastest-growing mode is balanced by viscous damping.
For an isotropic turbulent spectrum, where ky = ky,
this again leads to the approximate form given in

Eq. (100). It should be noted, however, that the
initial assumption of a turbulent spectrum (i.e. a large
number of unstable background waves) breaks down
close to marginal stability. Conceptual arguments
for the resolution of this difficulty have been given
in Ref. [143], but a formally rigorous justification
has not been presented to date. A more practical
difficulty in the application of strong-turbulence
theory involves the fact that the choice of the growth
rate and wave number in the diffusion coefficient is
somewhat arbitrary since the non-linear spectrum is
unknown. Obtaining such information would require
a much better understanding of mode coupling in the
presence of strong turbulence. Phenomena such as
the possible formation of convective cells [148] and
clumps [149] could also play an important role here.

4.1.2. Strong turbulence and de-trapping effects

The strong-turbulence formalism developed by
Dupree [145] for analysing low-frequency drift
instabilities in a slab geometry has recently been
extended by Waddell [150] and Ehst [151] to include
trapped-particle effects. These authors have obtained
solutions to the drift-kinetic equation [98] for a
toroidal geometry and used the results to analyse the
dissipative trapped-ion mode [151] and the collision-
less or interchange trapped-particle mode [150].
Since w < wy; for these instabilities, Waddell has
pointed out that it is convenient to work with a
bounce-averaged form of the drift-kinetic equation
to determine the trapped-particle responses. The
main conclusions of both authors are that (i) the:
dominant saturation mechanism is again the wave-
induced viscous damping, and (ii) the radial diffusion
coefficient is approximately given by

2
D = Y/2k (104)
where k; is the radial wave number. In addition, Ehst
has found that, at saturation, |e ®/T| < €'/?/|k;rql.
Using a similar strong-turbulence formalism, Sugihara
and Ogasawara [152] have also obtained the result of



Eq. (104) in a recent paper. However, it should be
noted that the expression for the non-linear dispersion
relation given in their work is in error since neither
the usual collision terms, veft,j, nor the turbulent-
damping factor, d, should appear in the numerator of
the density response.

In addition to cross-field turbulent diffusion,
“de-trapping” effects involving motion along the
magnetic field line have also been considered as viable
saturation mechanisms for trapped-ion modes.
Electrostatic de-trapping has been investigated by
Jablon [153], who concluded that the electric field
generated by the instabilities can greatly enhance the
de-trapping rate of the particles and can lead to lower
saturation levels than turbulent radial diffusion.
However, in recent work, Ehst [151] has reported that,
owing, in large part, to the use of an incorrect perturbed
orbit in his time integral, Jablon greatly overestimated
the damping effect of this collisionless de-trapping
process. Using a corrected form for the decorrelation
frequency, he found that the effect is much weaker
than the collisional de-trapping associated with the
turbulent diffusion of particles along the magnetic
field line in the presence of an electric field. This
collisional de-trapping was in turn found to be con-
siderably weaker than the viscous damping from
perpendicular diffusion. The influence of electrostatic
de-trapping (and trapping) on collisionless drift and
trapped-electron instabilities has also been studied.
Kadomtsev and Pogutse [154] noted that, at sufficiently
large wave amplitudes, the collisional scattering of the
electrostatically trapped electrons can produce a non-
linear drift instability for ne = dInTe/dInne < 0. They
also proposed that for ne > 0 this same process could
be an effective saturation mechanism for the dissipative
trapped-electron modes. However, in subsequent
studies, Ott and Manheimer [155] performed more
detailed calculations with an improved model for
collisions and found that this electrostatic de-trapping
effect is very weak and is not likely to be competitive
with other saturation mechanisms.

As noted earlier, Coppi, et al. [43—47] have pointed
out that if odd modes can be excited, the de-trapping
(scattering) of deeply trapped particles could be
significantly enhanced. They also considered the
influence of electric fields on the barely trapped and
barely circulating particles in the collisionless limit
by adopting a simplified single-mode picture [45].
Since the linear orbit approximation breaks down in
the boundary layer (i.e. where w = wy;), they
numerically integrated the exact orbit equation and
found that for a sufficiently large wave amplitude, a
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large orbit amplification can result. In a recent paper,
Smith [156] has also considered this single-mode
problem for the trapped-ion instability. Using a
Hamiltonian formulation for the equations of motion,
it was demonstrated both analytically and numerically
that the non-linear stochastic effects in the boundary
layer can be strong even for a relatively weak wave
amplitude. These strong perturbations of the ion
trajectories are attributed to the overlap of the bounce
resonances (wp = w/n). As noted by Dobrowolny and
Negrini [157], enhanced de-trapping at multiples of
the bounce frequency could also occur in the presence
of ion-acoustic turbulence (i.e. for a many-wave
picture). In addition, it has been suggested that
enhanced de-trapping can be dynamically generated
by externally imposing oscillations in the magnetic
field configuration [158]. Finally, it should be
mentioned that turbulent velocity-space scattering

has been considered as a possible saturation mechanism
for trapped-ion modes by Berk and Rosenbluth [159].
The notion here is that the trapped-ion instability

can produce a loss-cone-type ion distribution which
generates unstable ion-cyclotron modes. The presence
of these high-frequency instabilities in turn raises the
effective ion collision frequency. Although the stability
of the longer azimuthal-wavelength modes is enhanced
by this non-linear process, the authors concluded that
the overall effect on the rough D = y/k} diffusion
estimate is not appreciable.

4.1.3. Fluid models and mode coupling

As pointed out by Kadomtsev and Pogutse [2, 3]
the non-linear analysis of low-frequency drift
instabilities can be considerably simplified by using
fluid-type equations to approximate the essential
kinetic effects. In their application of this approach
to the trapped-ion instability, collisions were treated
with a Krook-type operator, the untrapped responses
were taken to be adiabatic, and, after bounce averaging,
a greatly simplified form of the drift-kinetic equation
was integrated over velocity-space to generate the
following two-dimensional continuity equation for

the trapped-particle fluid densities, n;r:

P T T T
—_— .+ . . |
e "5 TV (nJ VJ)

(105)

1 T 1/2
. \)j (nj € ng exp(e(b/T)j)
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One should remember here that the gradient operator
in the second term does not act on the relative fraction
of trapped-particles in nd because this factor arises
from the velocity-space integration, i.e. the gradient

~ operator formally appears inside the velocity-space
integral [160, 161]. Note that the right-hand side of
Eq. (105) models the collisional relaxation of n1
toward a Boltzmann equilibrium, the fluid velocities,
V}, are determined by the usual momentum balance
equation, and the potential, ®, is related to n;r by the
quasi-neutrality condition:

nz +(1- el/z)no exp (e®/T)

= nf + (1 - el/z)no exp(-e®/T)  (106)

with Te = T; =T. By taking |e¢/T| = ¢ << 1,
ignoring V B-drift effects, considering the slab limit
[r—=x and r(6 — ¢/q) = y], and invoking the usual
approximations appropriate to the dissipative trapped-
ion modes, Eqs (105) and (106) can be readily
combined to give

v2 2
3 3 * 9 -

) ) v
t - 2y
Vi 3 7.2
= - El/?- (l-ni) 3}7 (d)
2v2r > N2 ~ -
__*&(3_4’3_1’_&1 3 <I>) (107)
172 i 3x 542 3y Xy

with v 4 - =V,
14

The non-linear terms on the right-hand side of this

equation come from the convective steepening terms

{«V- [n‘;‘ (c?xg/Bz) ]} in the continuity

equation. When set to zero, the left side just gives the

=k vt ik2v2/v ) - dv

for & « expli (kyy - wt)]. Wimmel [161] has

noted that a parallel electric field can be readily
incorporated in this fluid model.

In analysing Eq. (107), Kadomtsev and Pogutse
pointed out that the two-dimensional non-linear term
acts to convect energy from the longer wavelength
modes to the shorter wavelength modes. As the

usual linear result, w 0
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energy is transferred to the larger wavenumbers, a
broad turbulent spectrum could rapidly develop. The
authors then argued that this justifies replacing the
non-linear mode coupling term with an effective

turbulent diffusion term, D[ (3 2/ 8x2)

+ (9 2 / ayz) } ¢. Balanced against the linear growth
term, this leads again to the familiar result,D = y/k 3,
fork, = kX = ky

[162] have recently reported that numerical solutions
to the same non-linear equation [i.e. Eq. (107)] show
no evidence of such turbulent processes. Considering
the limit, n; = 1, which effectively eliminates the _
radially local wave-steepening term [« (3/3y) (9) 2 1s
the authors treated this problem as a time-dependent
initial-value calculation. Their numerical results
indicated that the saturation mechanism appears to be
a coherent process which generates modifications in
the equilibrium density profiles. Such an effect could
result, e.g. from the effect of the zero-frequency
harmonic generated by the non-linear beating of an
unstable mode with itself [142]. The associated
transport coefficient was found to exhibit a Bohm-
like scaling which could exceed the familiar Kadomtsev
and Pogutse estimates, Dg.p, by an order of magnitude,
or more, for relevant parameters.

LaQuey, et al. [163] and Cohen, et al. [160, 89,
164] have also analysed the dissipative trapped-ion
instability by using the basic Kadomtsev-Pogutse fluid
model but have additionally incorporated kinetic
effects which act as energy sinks at short wavelengths.
It is well known from the linear analysis described
earlier that Landau damping by circulating [29, 30]
and trapped [31] ions exerts a strong stabilizing
influence at short wavelengths provided »7; < 2/3.
LaQuey, et al. [163] introduced this kinetic effect
into the fluid model by perturbatively adding to
Eq. (107) the term,

. However, Saison and Wimmel

/5.

—A (1 -3n, /2)k i

4 4
Yup y *
with A’ being a numerical factor (typically ~ 40).
Recalling the fact that |wo/v_| <1 for the dissipative
trapped-ion modes, these authors noted that it is
relevant to analyse the radially-local, one-dimensional
problem which results when the two-dimensional non-

linear term in Eq. (107) is negligibly small, i.e. when
|ernw0 /v_| << 1. After a transformation to the

drift frame moving with speed v,, the equation can be
cast in the dimensionless form



ot 352 864
+ aig: (QJ)Z =0 (108)

with the last term providing the convective non-linear
steepening. LaQuey, et al. obtained two types of
analytic solutions, i.e. ‘“two-mode”’ equilibria and
“multi-mode” or ‘“‘solitary-wave” equilibria.

In subsequent investigations, Cohen, et al. [160]
demonstrated both analytically and numerically that
the multi-mode equilibria are irrelevant since they are
neither stable nor accessible. On the other hand, it
was found that the two-mode equilibria could satisfy
these requirements even in the presence of wave
dispersion which inhibits the mode coupling process.
It was noted that the corresponding transport coeffi-
cient could be considerably smaller than Dx _p.
However, the authors have also emphasized that their
analysis is valid only if the width of the unstable
spectrum is sufficiently narrow. In more recent work,
Cohen and Tang [164, 89] have pointed out that the
local equilibria could be unstable to radial perturbations
associated with the 2D non-linear term in Eq. (107).
From linear kinetic theory it is known that the
presence of magnetic shear can enhance the circulating
ion-Landau damping effects and that finite-ion-banana-
width corrections to wy tend to decrease the growth
rates [34]. These perturbative effects were accordingly
added to the 2D fluid model to provide an energy sink
at short radial wavelengths. The authors have found
that the additional coupling to stable modes provided
by the 2D non-linear term apparently leads to smaller
saturation amplitudes than the 1D situation. This
calculation again can only be applied when the
spectrum of unstable modes is sufficiently narrow.

Fluid-type 2D slab models have also been employed
in the non-linear analysis of drift and trapped-electron
instabilities. Here the basic approach [165—169] has
been to consider only the linear response for the
electrons and to obtain the non-linear ion response
from the familiar fluid equations, i.e. the continuity
equation and the momentum balance equation.
Taking the electron response to be adiabatic to
lowest order and using the quasi-neutrality condition,
Tasso and others [165—167] have shown that in the
radially local limit the non-linear drift wave equation
reduces approximately to

9 3 )e - L 3 (92 =
(3t+vd ay)(I> 2 "e Vaay (B =0
(109)
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where & = e®/Te, vq4 = cTe/eBry, is just the dia-
magnetic drift velocity, and the non-linearity arises
again from the non-linear € X _B) convective flow. In
the absence of wave dispersion and energy sinks,

this non-linearity produces a steepening of the wave
form which leads to solitary-wave solutions [165—166].
Manheimer, et al. [167] subsequently applied this

type of analysis to the simplest form of the dissipative
trapped-electron instability. If VB-drift effects are
ignored, the dominant portion of the unstable
spectrum falls in the non-dispersive long-wavelength
region. Moreover, at shorter wavelengths, the dissipative
stabilization for ne > 0 provides an effective energy
sink. Numerical calculations of saturation amplitudes
from this mode coupling process indicated considerably
smaller transport levels than the usual 'y/ki estimate.
However, as acknowledged by the authors, this picture
is irrelevant in practice since the V B-drift de-stabilization
of the shorter-wavelength modes eliminates their energy
sink and extends the unstable spectrum into the highly
dispersive region.

In more recent work, Horton [168, 169] focused
attention on the two-dimensional non-linearity in the
ion fluid response and cast the non-linear drift wave
equation in the form

Here n = nj/ng, Dg = cTe/eB, and L is the usual linear
operator, i.e. in the absence of the non-linear term
Eq. (110) reduces to the usual linear eigenmode
equation for drift and trapped-electron modes in a 2D
slab. The analysis was carried out in the spirit of the
weak-turbulence approach [142] described earlier,
and the derivation of the final form of the non-linear
wave equation studied is characterized by the following
features: (i) the potential, 5, and density fluctuations,
T, are expressed in terms of a time-dependent super-
position of linear eigenmodes; (ii) the radial dependence
of these eigenmodes is taken to have the localized,
single-rational-surface structure of the Pearlstein-Berk
solutions; (iii) harmonic components generated by
self-interaction in normal modes are neglected; (iv) the
usual weak-turbulence assumptions of random phase,
peaking of frequency spectrum about w = wy, small
growth rate relative to the mode frequency (ygx/w| < 1),
and small amplitude (551 < 1) are invoked; and (v) the
perturbation expansion is carried out to third order in
the wave amplitude.

An equation for the saturation amplitude was
obtained by balancing the linear growth rate against
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the rate of energy output from the non-linear dissipa-
tion. Here it was concluded that the dominant
saturation mechanism is provided by a wave scattering
term which appears to be analogous to the Compton
(“bare” particle) scattering contribution to the non-
linear Landau damping term from standard weak-
turbulence kinetic theory [142, 143]. Asin the kinetic
calculation, the mode coupling term transfers energy
from the short to the long-wavelength regime, where
ion-Landau damping is invoked as the energy sink.
However, in this fluid calculation there is no term
analogous to the part of the kinetic non-linear Landau
damping term associated with the scattering by the
charge of the shielding cloud [143]. Using only the
non-linear scattering factor (obtained from the fluid
analysis) along with the growth term, Horton found
that the spectral density, I(ky ps), could be approxi-
mated by

N
=

P
- S S
I (kyps) * Tk o ( - ) = |Im Dk(wk) l
y n
(111)
where Dy (wy) is the imaginary part of the usual linear
dispersion relation. The corresponding spectral density
of the potential fluctuations is given by

<;2> > <;)2 S fd kg Tlkyp) (112)

and the turbulent energy density by

~2
Wzne'l'e <n>

(113)

Comparison with strong turbulence and free energy
(17] upper-bound estimates of Wp,ax showed that the
ratio, @ = W/Wpax, falls roughly in the range

0.1 <a<0.7 for typical parameters [169]. With the
amplitudes determined, the anomalous particle and-
thermal fluxes can be readily estimated from standard
quasi-linear expressions [170]. In applying the
preceding analysis to recent experimental data, Horton
calculated the magnitude and shape of density
fluctuation spectra for measured parameters. Despite
the fact that a number of the approximations made in
the theory are not satisfied in the actual experiments,
comparisons indicated good qualitative agreement with
the measured fluctuation spectra {169]. This is
illustrated in Fig. 8. :
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FIG.8. Comparison of the theoretically calculated spectral
distribution, Ik, p), given in Eq.(111) and Refs [168, 169],
with the electron density fluctuation spectrum obtained from
microwave scattering in the ATC experiment given in Ref.{208).

As noted earlier, Tsytovich [143] has emphasized in
the past that the shielding-cloud effect can be an
important factor in the non-linear ion-Landau damping
term. In particular, at long wavelengths, the kinetic
theory indicates that the non-linear scattering term is
down in magnitude by roughly ki pi2 from the result
using only the Compton (unshielded) scattering
contribution. A kinetic analysis including the shielding
effect leads to a drift wave equation similar to Eq.(110)
except that the non-linear factor (for k; p; <1) is now
approximately given by

Hasselberg, et al. [171] have recently studied this
mode cdupling term within the framework of standard
weak turbulence theory as applied to the collisionless
drift and trapped-electron modes. Using a 2D slab
model, they expanded to third order in the wave
amplitude and found that the primary contribution

of this non-linearity is to introduce an additional
amplitude-dependent factor into the coefficient of the

usual radial derivative, pi ('82 @k/ sz ), in the
drift-wave equation. Assuming that all but the lowest
(n = 0) radial eigenmodes are shear stabilized, these

authors obtained solutions which have the same
structure as the usual linear eigenfunctions,



~

¢k « exp (—ickaz/Z). However, the shear

length, L, in the corresponding eigenvalue conditions,
was found to be effectively replaced by an amplitude-
dependent shear length,

2 _ 2 ~ 02
s = L [1-£(e)7]

(114)

. -2 - 2 .
with £(9)“ « }%l @+ |“ > 0. Noting that the
modified shear length decreases with increasing
turbulence, Hasselberg, et al. have concluded that this
non-linear enhancement of shear stabilization can lead
to lower saturation amplitudes than commonly
predicted. It should be pointed out, however, that
such favourable processes could be effectively
suppressed by the linear 2D toroidal coupling effects
discussed earlier [88—90].

Mode coupling effects associated with the possible
interaction of low-frequency drift instabilities with
high-frequency modes in the plasma have been
investigated by Satya and Kaw {172] and by Chen,et al.
[173]. Following standard weak-turbulence formalism
[174, 142], Satya and Kaw considered the effect of
background electron-plasma-wave turbulence on the
dispersion relation for low-frequency drift waves. For
such effects to be important, the amplitude of the
high-frequency turbulence must be considerably
higher than typical levels in tokamak systems.
Motivated by the interest in using RF waves near the
lower hybrid frequency as a supplementary heating
scheme, Chen et al. [173] have recently investigated
the influence of a self-consistent lower hybrid pump on
trapped-particle instabilities. In their analysis, the pump
could either be a single coherent wave or a spectrum
of turbulent waves. The familiar three-wave-coupling
weak-turbulence formalism [142] was applied, and
modifications to the local dispersion relations for the
simplest forms of the dissipative trapped-electron and
trapped-ion modes were obtained. The parametric
coupling to the pump was found to be primarily due
to the parallel ponderomotive force acting on the
untrapped electrons. Estimates using amplitudes
from typical lower hybrid pump fields indicated that
these effects can either be significantly stabilizing or
de-stabilizing, _d)epending on the orientation of the
wave vectors, k, for the drift waves. The authors
noted that, as a rough criterion, the effects are usually

de-stabilizing for k/k; < (me/M;)"’ 2, It was accordingly

concluded that the influence of lower hybrid heating
tends to be unfavourable for the trapped-electron
modes and favourable for the trapped-ion modes.

TOKAMAK MICROINSTABILITIES

4.1.4. Marginal stability considerations

In analysing the transport properties of systems
close to marginal stability, an approach, which is
generally different from those described in the pre-
ceding sections, has also been employed [8, 175].

The basic concepts involved are explained, e.g. in a
paper by Simon [175]. He considered a linearly
stable, time-dependent equilibrium state which is
driven unstable by a slight change (A) in the external
parameters of the system. It then evolves to a new
equilibrium state which can oscillate in time. As
demonstrated in Ref.[175], the amplitudes of these
final oscillating states along with the associated trans-
port rates and frequency shifts can be calculated as

a function of A. This approach was applied to the
analysis of dissipative drift modes in a straight system
with a uniform magnetic field by Hinton and Horton
[176] and by Monticello and Simon [177]. In these
calculations the external parameter was taken to be
the magnetic field, i.e. A = (B—B¢)/B, with B¢ being
the critical field for the onset of instability in the
linear theory. Working with the Braginskii fluid
equations {10], Hinton and Horton considered the
mode coupling effects (treated in earlier work by

Stix [178]) together with ion viscous effects. The
latter were found to provide the dominant saturation
mechanism. However, the density profile modifica-
tions generated by the non-linear beating of the unstable
mode with itself were not included. In subsequent
work, Monticello and Simon [177] found that this
effect could lead to lower saturation amplitudes.

They reported that the comparison of their theoretical
results with experimental data from Q-machines
indicates good agreement. More recently, Simon and
Gross [179] have applied the same marginal stability
approach to the Vlasov equation with the purpose of
determining the threshold behaviour of collisionless
drift modes in straight systems. - As before, the non-
linear evolution of a single unstable mode in a uniform
magnetic field was studied, and the saturated amplitude
was found in terms of A = (B — B;)/B;. The authors
have concluded that the saturation mechanism here
appears to be an increase in the ion-Landau damping
caused by a non-linear decrease in the phase velocity
of the wave along the cylindrical axis. It should be
noted, however, that such effects have not been observed
in particle simulations of collisionless drift waves in
similar configurations [108].

Marginal stability concepts have also been applied
by Manheimer, et al. [180] to estimate anomalous
transport effects associated with the simplest form of
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the dissipative trapped-electron instability [20] in a
slab geometry. As in the earlier studies [175—179],
the starting point involves assuming a steady-state
equilibrium configuration at marginal stability. How-
ever, in this case, the magnetic fields are non-uniform
and the modes of interest are driven by temperature
gradients. Attention was accordingly focused on
marginally stable temperature profiles and the changes
in these profiles generated by external mechanisms.
The basic approach here is to first use linear theory

to calculate the marginally stable temperature profile.
Assuming classical resistivity, this also determines the
current profile since j « T3/2. If the input and outflow
of energy together with other relevant fluid properties
of the confined plasma are also known, then the
temperature and current profiles can be used to cal-
culate the steady-state energy flux in the system. The
saturation amplitude of the instability can, in turn,

be estimated by using this information with the usual
quasi-linear expression for the energy flux [170].

In applying the preceding approach to the dissipative
trapped-electron mode, Manheimer, et al. [180] began
by recalling that the familiar shear stabilization cri-
terion (82, 83] for the simplest form of this instability
can be expressed as

[1+2(1, /7)1 (x/R) M2 (1/q%) (da/ar)

=-0.25(1/T,) (dTe/df) (115)
If the resistivity is taken to be classical, then Ampére’s
law can be used to generate another equation relating
q to Te, i.e.

dg/dr = (2q/r)

x (1 -1 /7, (01 *[a/q(0)1) «16)

Because of the singularity at r = 0, these coupled equa-
tions were solved by numerically integrating from
r=0.1 a to r = a with a being the edge of the plasma.
The authors found that the results for the relative
temperature profiles, Te(r)/Te(0), can be expressed

in terms of q(a), which in turn is determined by the
total plasma current (i.e. by the external circuit). It
was reported that, for typical tokamak parameters,
this procedure leads to estimates of fluctuation ampli-
tudes in reasonable agreement with measured values.
Unfortunately, in an actual toroidal system, the simple
shear stabilization criterion given in Eq.(115) is not
likely to be applicable. For example, magnetic-drift
effects can lead to critical shear requirements which
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cannot be satisfied [22, 23]. Moreover, recent 2D
calculations have indicated that toroidal coupling
effects can significantly modify and possibly eliminate
the stabilizing influence of magnetic shear [88—90].
Nevertheless, the general marginal stability approach
described here provides an interesting alternative to the
conventional non-linear appraoches.

4.1.5. Particle simulations

It is well known that particle simulations have
provided very useful information in the investigation
of transport processes for confined plasmas in thermal
equilibrium. Results from these numerical calculations
have served as helpful guidelines in the development
of analytic non-linear theories in this area. A review
of such theories as well as a description of relevant
computational techniques can be found in a survey-
type article by Dawson, et al. [181]. More recently,
particle codes have been developed to study non-
linear effects associated with the presence of low-
frequency drift instabilities in a cylindrical geometry.
As noted earlier, these have involved investigations of
collisionless drift and trapped-electron modes [108,
128, 169, 182, 183].

In the “24 —D” (x, y, vx, vy, vz) models developed
by Lee, Okuda, and Matsuda {108, 128], the plasma
is taken to be non-uniform and bounded by conducting
plates in the x-direction and to be uniform in the y-
and z-directions with periodic boundary conditions.
As shown in Fig.9a, the magnetic field lies in the y-z
plane and ii» ti_l_ged at a small angle, a, off the z-axis.
Since kj = B k/B = ky sina, the ratio of kj to ky is a
constant fixed by the choice of a. In the collisionless-
drift-wave simulations [108], temperature gradients
are not considered, but allowance is made for the
presence of magnetic shear by adding the component,

s(x) = ¥Bo (x —xp)/Lg, with x, being a reference

Z
Z
T:gg f B(2) >-Mirror Plane
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FIG.9. A sketch of the 2§-D model used in particle code
simulation of collisionless drift and dissipative trapped-electron
instabilities.



point in x. Now the constant ratio, k;, /ky, is determined
primarily by the choice of Lg. It was reported that,
for the linear stage of the simulations, growth rates in
the shear-free limit were found to be in good agreement
with analytic theory, and shear stabilization thresholds
apparently exhibit the scaling |ry/Lg| &« (me/M;)"3.
In addition, the results tended to support the existence
of the energy transport mechanism suggested by Coppi
[103], i.e. that energy is transferred from the parallel
electron temperature to the waves through inverse
Landau damping in the unstable regions. The cor-
responding quasi-linear modifications [142] in the
velocity-space distribution of the electrons were also
observed. However, no evidence for ion-Landau
damping in the form of ion heating was detected. As
emphasized by the authors, the dominant saturation
process appears to be the quasi-linear modification of
the density profile. The associated particle transport
for most cases investigated was found to be roughly
a factor of four less than the familiar y/k}-estimate.
Matsuda and Okuda [128] used a shearless version
of the 24-D model to study dissipative trapped-electron
modes. As indicated in Fig.9, temperature gradients
are included, and the magnetic-trapping effects are
artificially introduced by reflecting some particles at
the planes z = z; and z = z,. Specifically, particles,
whose ratio, |vy /v, |, falls below a given value at z = z,
and z = z,, are reflected along the field lines. Monte-
Carlo collisions are employed here to model the
electron-ion pitch-angle scattering. In accordance
with conventional theoretical predictions, it was found
that, in the presence of magnetic trapping and colli-
sions, drift waves tend to be de-stabilized by positive
electron temperature gradients (ne > 0) and finite-ion-
gyroradius effects. These fluctuations were observed
to disappear if either ne < 0 or if collisions are sup-
pressed. In the non-linear stage of the simulations, it
was found that the saturation of the instabilities is
primarily effected by a quasi-linear flattening of the
temperature profile. The authors reported that this
process tends to occur before the density profile
changes significantly, and that the estimated thermal
transport is roughly a factor of five less than the
'y/ki-estimate. It was also noted that the quasi-linear
velocity-space effects seen in the collisionless-drift-
wave simulations are effectively suppressed here because

the presence of collisions serves to maintain a Maxwellian

distribution for the electrons. Typically, in both the
collisionless drift and trapped-electron simulations,
the saturation amplitude of the instabilities, |<1~>|, was
of order 10% with kypj ~ 0.5 for the most unstable
modes.

TOKAMAK MICROINSTABILITIES

In very recent work, Cheng and Okuda [182] have
developed a fully 3D (x, y, z, v, Vy, Vz) model to
simulate collisionless drift modes in a cylindrical
geometry. Here the system is bounded in x and y
and periodic in z. There are no initial temperature
gradients, and the magnetic field is taken to be
uniform and to lie in the z-direction. However, in
these 3D simulations there are now distinct Fourier
modes in the z-direction,i.e. the ratio of k| to ky is
no longer constrained to be a fixed quantity as in the
24-D case. In addition to finding reasonable quali-
tative agreement with most of the earlier 24-D results,
the authors have reported that convective cells
(characterized by w =0 and k" = 0) can be non-linearly
excited by unstable drift waves. It is proposed here
that the observed anomalous particle diffusion is
initially caused by the drift modes but that at later
stages it is due to non-linearly excited convective cells,
which can continue to enhance diffusion even after
the drift instability is saturated. The physical picture
suggested by the authors is based on the notion that
the ions and the electrons respond differently to the
electric field, Eg, generated by the drift instabilities.
This difference in the cEg /B-drifts causes local charge
separation producing an effective E;-field. The result-
ing two-dimensional electric fields then give rise to
vortex flows [148].

Recalling that the simple linear theory of drift
instabilities indicates that w; = Re(w) can have the
same value for two different values of kypj, Okuda
and Cheng [183] have reported that a standard applica-
tion of weak-turbulence mode-coupling theory [142]
indicates that these convective cells (with w =0 and
ky = 0) can be generated non-linearly. With regard
to the consequences of such phenomena, it was pointed
out [182] that, in the absence of convective cells,
non-linear processes, such as quasi-linear profile modi-
fication, can saturate drift modes without completely
flattening the density gradient. However, in the
presence of these vortex flows, anomalous diffusion
was found to persist until the gradient is entirély
eliminated, thus leading to larger saturation amplitudes.
For typical cases, both the simulation results for
the overall diffusion coefficient and the estimates of
convective-cell diffusion [148] indicated rough agree-
ment with the y/k{ predictions, i.e. quantitatively,
D|(cm?:s7')~ O(1072). It was also noted that in the
presence of convective cells the power spectrum
exhibits peaks at both w = 0 and w = w,. This
qualitative behaviour has been experimentally observed,
e.g. in the FM-1 spherator [184] for sufficiently weak
magnetic shear. Within this context, it should be
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emphasized, as a final point, that the presence of
shear can severely inhibit the formation of convective
cells. Cheng and Okuda [182] have introduced this
effect into their 3D simulations and have found that
convective-cell phenomena become negligibly small
for Lg/r, <25.

4.2. Confinement estimates and transport modelling

To assess the danger of enhanced anomalous trans-
port in tokamaks, it is necessary to obtain an estimate
of the effective confinement time, 7, in the presence
of microinstabilities. It is well known that the starting
point here involves taking the velocity moments of
the Boltzmann equation and working with the resulting
conservation equations for each species [10]. The
basic equation governing radial transport of particles
has the form

- 3 9
= -a—erarn.+S

3 I a1

R

)
3t

where Sy is a source term accounting for ionization.

At the simplest heuristic level, one can assume D to

be a slowly varying function of radius, [rdInD/dr| <€ 1,

and to consider a steady-state situation, dn;/dt = 0.

For nj = ny(1 —r*/a?) and Sy = —no/7, Eq.(117) yields

the often-quoted [185] estimate, 7 = a2/4D, where

a = plasma (or limiter) radius. Since the equation

governing thermal transport has roughly the same

structure as Eq.(117), this result is also used to estimate

energy confinement, i.e.

2

T, = a /4% (118)
E

with x being the heat transport coefficient. Another

rough approximation for 7 can be obtained by taking

n; = fj(r) exp(—t/7) + ng; and associating 7 with the

e-folding density decay time in the absence of a source

term (S; = 0). If D is again assumed to vary weakly

inr, Eq.(117) reduces to a Bessel equation with solu-

tion, fi;(r) = J, (ar) where @ = (D)2, Recalling that

the first zero occurs at ar = 2.4 and invoking the

boundary condition, fHj(a) = 0, then leads to the

result, 7 = a%/(5.76D).

Using Eq.(118) along with the familiar y/k} approxi-
mation for the transport coefficients, Dean, et al.[185]
obtained rough estimates for tokamak confinement in
the presence of collisional drift modes and dissipative
trapped-electron and trapped-ion instabilities in their
simplest forms. The results for representative para-
meters were quoted by Furth [1] in his review article
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100

FIG.10. Rough estimates of confinement as a function of
plasma current given in Refs (1, 185). Here, By = 50 kG,
ﬁpe =1,R/a=3 Zx=1, T,= T, and (T,) is the average
electron temperature.

on general aspects of tokamak research and were dis-
played there in the form shown on Fig.10. “Pseudo-
classical” refers to the use of the transport coefficient
introduced by Yoshikawa [11] in the collisional-drift-
wave regime, and “Bohm” refers to the diffusion
resulting in the irrelevant very-high-temperature regime
where the collisionless (interchange) trapped-ion modes
could appear. The two labelled curves indicate the
criteria for reaching energy ‘“‘break-even’ (Lawson
criterion) and for attaining “ignition” conditions in

a deuterium-tritium plasma assuming 40% thermal
conversion efficiency. For By = 50 kG, Bpe = 1,
R/a=3,Zes=1,1p=2,6=2/9,n=1,and Te = Tj,
the equations used to generate Fig.10 are [185]:

=3X101412<Te>l/2 (119)

(nTg) psrupo

[

14 _4 -11/2
(NT)gpy = 3x10°° 1 <Te> (120)

B 13 .2 1/2
(Mg gy = 1 x 1077 I <Te> (121)

and

_ 16 _4 -11/2
(ntp)p. = 3 x 1077 1 <Te> (122)

with (T¢) being the average electron temperature in
units of keV and the current, I, in MA.



Even at the simple level of the preceding estimates,
it is important to realize that the TE2 regime, which
scales favourably with (T,) according to Eq.(121),
does not exist in practice. As emphasized, e.g. by
Adam, et al. 23], VB-drift effects can be strongly
de-stabilizing in this higher-temperature range of the
trapped-electron modes. Following basic quasi-linear
procedures [82, 170], the mean energy flux, Q, across
a magnetic surface can be estimated from

2
ey (CTe) (2b) 1/2
(k

Q = = = Im[I
2,2 4 2p)
X" 1

()] 32

r, eB Q

(123)
where

PV 2)
I,(b) = (2¢) (“1/2

© ( * )

- - - W~ w
Xf dE El/2 exp(—E)( _.__.+T? )
0 w wDe 1Vf'e

b=kjp?/2, E=E/T,, and wpe = e w,E forrq'/qg = 1.
Use has been made here of the ambient gradient
approximation for saturation, le®|/Te = 1/k;r,, and
ky is determined by the simple slab result for the

radial structure [82], i.e. k3p? ~ (rn/Ls)(w,/w). The
integral, IQ(b), can be readily evaluated numerically
[23]. Taking Q = x.(9T./0r), g ~ a?/4x,, and € = 1/4
leads to the estimate

N 13 2 -5/2 4, -1
(ntg)op = 6 x 1077 1 <Te> (Q)

(124)
with Q being a numerical factor falling roughly in the
range 0.1 < Q < 0.7. Comparison with the results of
Dean, et al. [185] is illustrated in Fig.11. It is seen,
e.g. in the 1-MA case, that the nTg-estimate at
(Te) = 4 keV is nearly a factor of 5 worse. The results,
in general, indicate that anomalous transport due to
trapped-electron modes is likely to remain important
up to {Te» ~ 10 keV. Hence, in the expected operating
regimes of the larger tokamaks, such as T-10 and PLT,
both the trapped-electron and trapped-ion instabilities
could significantly affect confinement.

The crude estimates described in the preceding
discussion can be significantly improved by numerically
solving the radial transport equations. Beginning
around 1969, considerable effort has gone into the
development of one-dimensional radial-transport
codes. In the early work of Dnestrovskii, et al. [186,
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FIG.11. Modifications to Fig.10 introduced by the inclusion
of the VB-drift destabilization of trapped-electron modes
discussed in Ref.[23). The solid lines represent results cal-
culated as in Fig.10, and the dashed lines represent the
VB-drift-modified results.

187], Mercier and Soubbaramayer [188], and Diichs,
et al. [189], attention was focused on classical and
neoclassical transport processes. Subsequent studies
have dealt with the effect of impurities, neutral gas,
atomic processes, various neutral-beam injection
schemes, and microinstabilities. In a recent review
article, Hogan [190] has summarized the basic features
of 1D tokamak transport codes and has also discussed
in some detail the numerical methods used.

To treat anomalous transport caused by micro-
instabilities the most common approach has been to
use in the codes transport coefficients (D, x) obtained
from either simple 'y/ki-estimates or from quasi-linear
estimates of particle and energy fluxes (I', Q). Asa
decreasing function of collisionality, these coefficients
are typically taken to pass through a Bohm-diffusion
range (~ cT/16¢eB), a transition zone (~v'/3), and
the “pseudoclassical’ regime (~ v) of dissipative drift
waves. In the last case, D and x can be “empirically”
adjusted to fit experimental observations. At still
lower collision frequencies, the relevant transport
coefficients are taken to reflect the presence of trapped-
electron and trapped-ion instabilities. In recent work
by Rutherford, et al. [123], the VB-drift enhancement
of transport due to trapped-electron modes has been
taken into account. Their code also allows for the
possible presence of collisionless and current-driven
drift instabilities as well as enhanced transport caused
by MHD effects when q falls below unity near the
magnetic axis. The authors have reported that their
computed results agree with observed magnitudes of

1137



TANG

particle and energy confinement in present-day experi-
ments to within a factor of 3. However, even with the
inclusion of a simple form of current-driven drift
modes, the scaling of energy confinement time with
density (observed, e.g. in the ALCATOR experiment)
has not been adequately reproduced with the code.

As a final note, it should be mentioned that Krall
and Liewer [191] have recently considered the possi-
bility that additional terms, commonly neglected in
the 1D energy transport equation, could be important.
- In particular, they have proposed that such terms
would lead to a substantial reduction in the usual
estimates of energy loss caused by the dissipative
trapped-electron modes. However, in subsequent
work, Manheimer, et al. [192] concluded that these
instabilities cannot give rise to such anomalous heating.
Using the total energy equation along with the electron
momentum equation, these authors found that the
only effect here is an anomalous energy exchange
between electrons and ions.

4.3. Experimental results

Much of the early experimental evidence for the
existence of low-frequency microinstabilities was
obtained from linear devices such as Q-machines.

For example, conclusive identification of collisional
drift instabilities in such systems was established by
Hendel, et al. [193]. In subsequent work, Ellis and
Motley [194] presented compelling evidence for the
presence of the current-driven form of these dissipative
modes. At lower collisionality, “universal’’ or colli-
sionless drift instabilities were found by Politzer and
also by Stott, et al. [195]. As noted earlier, Deschamps,
et al. [114] and Prager, et al. [130] have concluded

that both the temperature-gradient-driven (ne > 0)

and finite-ion-gyroradius-driven forms of dissipative
trapped-electron modes are likely to be present in

their linear experiments. Finally, in a straight system
in which the ions are unmagnetized, Primmerman, et al.
[196] have reported detecting odd modes with charac-
teristic frequencies w < wy,. Especially in the case

of the dissipative drift instabilities, the comparison of
the experimental results in the references cited with
corresponding theoretical estimates generally indicates
reasonable agreement.

With regard to toroidal-type systems, most of the
experimental investigations of low-frequency micro-
instabilities have been carried out on internal conductor
devices such as the spherator, levitron, and various
multipoles. The basic features of these machines as
well as a summary of significant results obtained before
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1973 can be found in a review paper by Yoshikawa
[197]. For example, it was pointed out in this article
that data from the spherator experiment, obtained by
Pacher, et al. [198], correlate very well with the theo-
retically predicted effect of shear on collisional drift
instabilities.

Subsequent studies in the FM-1 spherator have been
focused on the investigation of anomalous effects in the
electron banana regime. By using pulsed heating,
Ejima and Okabayashi [ 199] demonstrated that fluc-
tuation levels can be dramatically reduced in the
presence of oppositely directed density and tempera-
ture gradients (ne < 0). This, of course, is indicative
of a particular property of the dissipative trapped-
electron instability, which distinguishes it from
ordinary drift modes. For ne > 0, the measured ratio
of particle to energy transport was reported to be in
reasonable agreement with the usual quasi-linear
theoretical estimates, i.e. (x/D) ~ 3. As discussed in
some detail by Sauthoff [200], the mode structure of
these instabilities can be investigated with the use of
Langmuir probes. The basic approach here involves
displacing pairs of these probes in the radial, toroidal,
and poloidal directions and then determining the
corresponding structures by correlation techniques.
The measured phase shifts and amplitude variations
were found to be in poor agreement with theoretical
results from simple shear-dependent slab models.
Better correlation would likely require a complicated
2D calculation taking into account the particular
features of the spherator geometry.

Current-driven drift and ion-acoustic modes have
also been investigated in the FM-1 device. Analysing
the scattering of microwaves by density fluctuations,
Arunasalam, et al. [201] found that in the electron
banana regime these instabilities are easily suppressed
by electron trapping effects. This is in agreement with
the earlier theoretical conclusions of Coppi and
Pozzoli [139]. More recently, Okabayashi and
Arunasalam [184] have applied similar microwave
scattering techniques to the measurement of density
fluctuations generated by the usual low-frequency
drift instabilities. For the experimental conditions
considered, the authors have noted that the results
correlate reasonably well with simple linear theoretical
dispersion relations for collisional, collisionless, and
dissipative trapped-electron modes in a strongly
sheared magnetic field. By varying the shear strength,
they were able to obtain stability criteria in rough
qualitative agreement with the Pearlstein-Berk-type
scaling, (rp/Ls)crit & (me/M;)Y3, discussed earlier. When
the shear was decreased, it was found that very-low-



frequency fluctuations (w < w,) could be enhanced
considerably. In the moderately-weak-shear range,

the frequency power spectrum exhibited peaks near
both w = w, and w = 0. As noted earlier, the quali-
tative behaviour here resembles the simulation results
for convective cells reported by Cheng and Okuda [182,
183]. However, in the limit of very weak shear, a state
of isotropic turbulence was observed. Specifically, the
density fluctuations in this regime showed a strong
dependence on frequency but no discernible dependence
on wave number. The strongly turbulent behaviour
observed here was also produced for the stronger-shear
cases at sufficiently high temperatures. The authors
have found no compelling theoretical interpretations
for these experimental observations. With regard to
the final saturation amplitudes, the measured levels
(typically, |6n/n| ~ 3%) were not appreciably affected
by changes in the shear strength and temperature and
tended to be in agreement with the familiar ambient-
gradient estimate of {dn/n| ~ |1/kr,|.

In the Culham levitron experiment, attention has
been primarily focused on the collisionless current-
driven drift modes. Alcock, et al. {202] have recently
reported observing enhanced plasma loss rates when
current is induced parallel to the main magnetic field
with the characteristic drift velocity in the range
5X 1073 Sug/ve S 1072, The particle confinement
time was found to scale as (uq/ve) ™' and appeared to
be insensitive to magnetic shear. Measurements of
the radial-mode structure yielded mode widths, which
are also unaffected Ly shear and are considerably
narrower than those predicted by simple-slab-geometry
calculations. These results served to motivate calcula-
tions by Taylor [88] and Cordey and Hastie [107], who
took into account the strong variation of shear and
other equilibrium quantities in the poloidal direction
and (as discussed in Sections 2.2.3 and 3.1) were able
to find unstable modes insensitive to shear. Alcock,
et al. [202] have pointed out that further measurements
are required before conclusive comparisons with such
modes can be made. As a general note, it should be
remembered that the characteristic density and
temperature of the plasma in both the spherator and
levitron experiments are much lower than those in
present-generation tokamak experiments. Typical
average values are n ~ 2 X 10!! cm™ with To ~ T;j~ 2
to SeVin FM-1,and n ~ 6 X 10" cm™ with T ~ T
~ 5to 10 eV in the Culham levitron.

With regard to recent octupole experiments, Drake,
et al. [203] have reported that, for a purely poloidal
magnetic field, vortex diffusion has been observed in
the Wisconsin levitated octupole. The experimental
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results here indicated that the radial diffusion coeffi-
cient scales as n"/? and appears to be in qualitative
agreement with theoretical estimates for convective-
cell diffusion [148]. In the presence of a toroidal

field both the Wisconsin and the General Atomic octu-
poles have shown evidence for the existence of trapped-
electron and trapped-ion modes [204]. These experi-
ments were carried out at much lower densities

(n < 10° cm™3) than those in the spherator and levi-
tron and could therefore fall in a more collisionless
regime. It was reported that the measured fluctuation
levels can be quite large (|6n/n| ~ 40%), and that un-
stable trapped-ion modes propagating in the ion rather
than the conventional electron diamagnetic direction
have been observed. A compelling correlation be-
tween these experimental results and viable theoretical
estimates remains to be determined.

Investigations of low-frequency drift waves have
also been carried out in stellarator experiments.
Kawahata and Fujiwara [205] have reported that data
obtained from the JIPP stellarator indicate the pre-
sence of collisional drift instabilities. Operating at
average densities and temperatures in the range
n~10° to 10" cm™3, Tg ~ 0.5 to 3 eV, they found
that these modes can be readily suppressed by shear
values as weak as |a/Lg| ~ 0.01, and that, for most
of the cases considered, only a few unstable modes are
dominant. In a subsequent paper, Hatori, et al. [206]
noted that the experimental data in such cases are
consistent with theoretical estimates obtained from
non-linear two-fluid equations near marginal stability.
Their calculation indicated that the saturation mecha-
nism can be associated with a flattening of the density
profile. More recently, Hamberger, et al. [207] have
performed microwave scattering measurements of
low-frequency density fluctuations on the TORSO
stellarator. Here the average operating parameters
(n~10'3 ¢cm™3, T, ~ 10? eV, B ~ 10 kG) begin to
approach conditions in present-generation tokamaks.
Fluctuation levels in the drift wave regime were
typically found to be of the order of several percent.
It was observed that as the current parameter, ug /ve,
increases, these levels also tend to rise. Noting that the
particle confinement time accordingly scales as (ug/ve)~!,
the authors have suggested that collisionless current-
driven drift instabilities could be responsible for the
fluctuations.

The first detailed measurements of small-scale
density fluctuations in a tokamak were carried out by
Mazzucato [208] on the ATC device. A spectral ana-
lysis of scattered microwaves produced a frequency
spectrum which is consistent with the presence of drift
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waves, and, as illustrated in Fig.8, exhibits its largest
amplitudes for wavelengths in the range 0.5 to 1 cm.
This corresponds to values for k) p; of order unity.
Subsequent measurements [209] with an improved
microwave scattering system indicated that the total
density fluctuations, |dn/nj, are of order 1072. The
typical uncompressed ATC discharge studied had
characteristic parameters, n ~ 10! cm™3, T, < 0.8 keV,
Ti~0.2keV,a~ 16 cm, R ~ 80 cm, gq(a) ~ 3.5, and
Zesr = 2. Corresponding values of Ve and Lg indicated
that collisionless drift modes as well as trapped-electron
modes could be present. In fact, turbulence levels
near the magnetic field minimum (where the trapped
particles would be concentrated) were observed to be
higher by nearly a factor of 3 than levels near the field
maximum. It has also been noted that the
turbulent_)spectrum gives some evidence of being iso-
tropic in k-space, and that if the heuristic random-
walk-type estimate for turbulent diffusion caused by
drift waves is employed, a large fraction of the electron
energy losses observed in the ATC experiment could
be accounted for {208, 209].

Another method for measuring small-scale density
fluctuations involves the use of CO, laser scattering
at small angles. Surko and Slusher [210, 209] have
applied such an approach to the ATC tokamak and
have corroborated the spectral information and fluc-
tuation amplitudes reported by Mazzucato. The
evidence here also favours the picture _c))f a turbulent
spectrum which is nearly isotropic in k). In particular,
it is stressed by the authors that instead of a
single frequency, a broad range of frequencies is
associated with a particular wave vector, i.e. in contrast
to the usual weak turbulence picture, here |Aw/wl is
of order unity. Moreover, the k;-spectra give no
evidence of the drift wave mode structure predicted by
simple slab model linear theory. The authors have
also noted that a non-linear process, recently investi-
gated by Hasegawa [211], could be relevant to the
present experiment. The notion here is that the
coupling of radial and poloidal modes by the € X _B)T
drift of ions can produce large frequency shifts com-
parable to w when |8n/n| is of order 1072. As a final
point regarding these CO, laser scattering measurements
it should be mentioned that, in sharp contrast to
Mazzucato’s results, the density fluctuations were
found to be nearly 50% greater near the field maximum
than levels observed near the field minimum [209].
This result is difficult to reconcile with conventional
theoretical predictions.

Other tokamak experiments, which typically
operate near the transition between the plateau and
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electron-banana regimes, include TFR [212] and
ORMAK [213]. Both machines give evidence of
anomalous energy transport leading to lower confine-
ment times than predicted by “pseudoclassical”
estimates. The 7g-scaling in these experiments suggest
some correlation with enhanced transport caused by
dissipative trapped-electron modes but could also be
related to the presence of MHD activity. In contrast
to the ATC, TFR, and ORMAK systems, the ALCATOR
device [214] operates at much higher fields (Bt ~ 80 kG)
and can generate higher-density (n 2 10" cm™3)
plasmas. At these densities the energy confinement
time appears to increase linearly with increasing n.
Coppi,et al. [215, 216] have recently noted that the
presence of current-driven drift modes could account
for such scaling. Although trapped-particle instabili-
ties are ruled out in this high-collisionality regime, it

is argued that, in the presence of an applied electric
field, magnetic-trapping effects can nevertheless pro-
duce a positive slope in the electron distribution. This
in turn can lead to substantial growth rates even when
Ug/Ve is relatively small. These authors have reported
that for certain ranges of wave numbers and tempera-
ture gradients (e > 0), such an effect can cause the
current-driven de-stabilizing term to dominate over
the combined influence of finite-iongyroradius and
temperature-gradient terms [215].

5. NON-ELECTROSTATIC AND
HIGH-FREQUENCY MODES

Up until the past few years, relatively little attention
has been paid to possible non-electrostatic and high-
frequency microinstabilities in tokamaks. However,
significant progress toward higher plasma temperatures
and densities together with the development of very
promising neutral-beam heating schemes have recently
served to stimulate considerable interest in these types
of instabilities. Mikhailovskii [49], e.g. has emphasized
that the de-stabilization of electromagnetic (non-
electrostatic) shear-Alfvén modes by toroidal effects
can become important as 8, (ratio of plasma pressure
to the pressure of the poloidal magnetic field) begins
to exceed unity. In addition, since neutral-beam-
injected tokamak fusion reactor concepts generally
involve the introduction of velocity-space anistropy,
the investigation of related electrostatic as well as
electromagnetic high-frequency instabilities has also
become important [55]. With regard to actual fusion
conditions, the production of alpha particles can be
still another source of velocity-space anisotropy. The



fast magnetosonic (compressional Alfvén) and shear-
Alfvén waves, which can be de-stabilized by such
effects, are often called “thermonuclear’ micro-
instabilities [60—62].

5.1. Shear-Alfvén modes

It is well known that, under normal circumstances,
pressure-gradient-driven shear-Alfvén modes in cylin-
drical systems are relatively unimportant'since they
have very small growth rates and are easily suppressed
by shear [95, 9]. Mikhailovskii, however, has pointed
out that in tokamaks toroidal curvature [49] and
magnetic trapping [50] effects can lead to significant
de-stabilization of these waves when 8 exceeds unity.
The basic notion here is that the inclusion of v,
(VB-drift velocity) in either the Vlasov equation or in
corresponding fluid equations will lead to an additional
de-stabilizing term in the shear-Alfvén branch of the
usual dispersion relation for low-frequency, pressure-
gradient-driven modes [8, 9]. In carrying out the cal-
culation, an ansatz similar to Eq.(17) was employed
for the perturbed quantities. It was then additionally
assumed that the slow poloidal variation could be re-
presented by a Fourier series truncated at m=+ 1, i.e.

P = [wm+ wm+ lexp(ie)
+ tpm _ 1exp(—i8) Jexp[i(mb - ng)] (125)

with ¥ = &= (A w/kyc). As discussed in Section 2.2.3,
such an approximation cannot be applied if the toroidal
coupling is strong, i.e. ballooning of the mode structure
along the field line must be sufficiently weak. Using
the form in Eq.(125), Mikhailovskii found that the
VB-term introduces an “effective’ parallel wavelength
of order 1/qR. He then reported that for 8, > 1, low-
frequency electromagnetic modes could be de-stabilized
by inverse-ion-Landau damping (w ~ vi/qR) in the
presence of density and temperature gradients.

In a subsequent paper [50], long-wavelength
(k;p; < 1) shear-Alfvén waves with characteristic
frequencies falling in the range v;/qQR <w ~ v, /qR
< wy, were considered. Here it was pointed out that
the collisional scattering of magnetically trapped
electrons could drive these modes unstable (in analogy
with the electrostatic dissipative trapped-electron
instability). Working with the drift-kinetic equation
and applying the procedures introduced by Rosenbluth,
et al. [29] to deal with collisional effects, Mikhailovskii
found that the appearance of such modes requires
Bo > Ti/Te and vegr, ¢ < W~ Wy ~ VA /qR < wpe.
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This radially local calculation indicated that the cor-
responding growth rates are roughly given by

v~ €2B,(veva/qR)V2. It has also been noted that
short-wavelength (k) p; 2 1) instabilities of this type
can appear [217] for B > 1. Mikhailovskii [120],
however, has recently reported that such short-wave-
length modes should be readily suppressed if 8 exceeds
6—1/2 .

Since w = kv for shear-Alfvén modes, and ky is in
fact a non-local quantity, a realistic assessment of the
influence of these instabilities on toroidal confinement
requires a proper treatment of the associated radial
structure in the presence of magnetic shear. This
problem has been investigated within the context of
high-energy neutral-beam injection (TCT) studies by
Rosenbluth and Rutherford [57]. Their calculation
was motivated by earlier radially local work [55]
which indicated that shear-Alfvén modes could be
strongly de-stabilized by Landau resonances with
beam ions that have unfavourable VB-drifts. In addi-
tion to the radially non-local nature of these instabi-
lities, the authors also took into account the spatial
variation (« cos §) along the field line of the beam
drift velocity and the presence of trapped electrons.
However, temperature gradients were ignored. The
basic approach involved calculating the perturbed
distribution functions from the drift-kinetic equation
with finite-ion gyroradius effects included through
the polarization drift velocity, \7}, = (M/eB?)(1+(3/4)

X pf Vi](a?/at). Analogous to the procedures described
in Section 2.3, an expression for the total parallel
current was obtained by integrating this equation over
velocity space. The result was then combined with the
quasi-neutrality condition to generate a fourth-order
radial differential equation which is approximately
given by

4 3
4

2.2 (17 . ] 3
{wpi(z~16)—+ ar ¥

Hw,H

or

2
2 . _.27 3 _ (mf-1
X Lw®(1+ 1Ab) wA] 3F ( )

 CwZ (1 + in) - wi]}g =0 (126)

where ®, A are assumed to vary as exp[—i(m8@ — n¢
+ wt)], £ =— m®/rB denotes the fluid-displacement
variable, wp (r) = k) (1)va, 8 = €72 wve[w? + (ve/e ']~
is the damping contribution from trapped electrons,
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and Ap = [1-(W,b/w))(np Tp)/(njMjw? R?) is the de-
stabilizing beam contribution.

In analysing Eq.(126) Rosenbluth and Rutherford
focused attention on fast-varying solutions amenable
to a WKB-type treatment. Around the singular-layer
region, where w = wy (1y), such solutions are charac-
terized by oscillatory behaviour for 0 <r <r, and are
evanescent for r > ry. The authors reported that the
stability criterion (obtained from the WKB eigenvalue
condition) indicates that for w < w,;, and sufficiently
small ry, unstable shear-Alfvén modes can appear.

This implies that the beam could be anomalously
flattened in radial density profile over the innermost
region (e.g. ro < 15 cm for typical proposed TCT
parameters). The effects here are considerably less
severe than radially local estimates [55]. However, in
discussing their results, Rosenbluth and Rutherford
noted that in the analogous situation for alpha-particles
in a reactor, the stability requirements (e.g. r, > 80 cm
for typical parameters) are apparently difficult to satisfy.
Hence, more careful studies relaxing some of the
approximations made and including temperature
gradient effects should be of interest.

5.2. High-frequency modes

As noted earlier, high-energy neutral-beam injection
tends to produce strong velocity-space anisotropy
which can lead to high-frequency electrostatic and
electromagnetic modes. In addition, the slowing-down
process for the injected ions can cause the plasma to
have a sheared mean velocity along the magnetic field.
Stix [53] has pointed out that for sufficiently large
values of this parallel velocity shear, low-frequency
modes, such as the Kelvin—Helmholz and ordinary drift
instabilities, can be excited. Subsequently, Catto,
et al. [218] carried out a more detailed analysis includ-
ing magnetic shear and obtained specific criteria for
the appearance of such instabilities.

With regard to the high-frequency modes, Berk,
et al. [55] have performed extensive calculations in
the infinite uniform-medium limit. Working with
representative steady-state distributions obtained
from approximate solutions of the Fokker-Planck
equation, these authors found that for parallel injec-
tion the associated perpendicular velocity-space aniso-
tropy is insufficient to de-stabilize the ion-cyclotron,
lower-hybrid, and electron-plasma waves. They have
additionally pointed out that compressional Alfvén
instabilities should be avoidable since the injection
velocity, vp, typically falls below the Alfvén speed,
Va, i.e the coupling between the beam and these
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Alfvén waves is suppressed if vy, < v, . In subsequent
work, Perkins [56] concluded that beam-driven electro-
magnetic ion-cyclotron modes can also be avoided
under typical steady-state operating conditions for
TCT systems. However, during the transient pre-
heat phase, the fast-ion distribution can be sufficiently
peaked to de-stabilize these waves.

Regarding peaked transient distributions, Mai and
Horton [219] have obtained stability criteria for a
variety of electrostatic instabilities. It was found
that if the density of the fast-ion component is low
compared to the main plasma component (i.e.
np/n small), stabilizing effects, such as electron
Landau damping, tend to keep these modes from
becoming significantly disruptive. Although an
extremely peaked transient distribution [Fy &« §(v—vp)]
can be strongly de-stabilizing [220, 219], the spread
generated by the resulting velocity-space diffusion
should quickly suppress further disturbances {55, 219].
It is likely that this spreading of the distribution will
also exert a strong stabilizing influence on the short-
wavelength shear-Alfvén modes, which were recently
analysed by Beasley, et al. [221] using Fy, & §(v — vp).

For the case of perpendicular instead of parallel
injection, Cordey and Houghton [54] have emphasized
that a large variety of high-frequency waves, such as
ion-cyclotron loss-cone modes, could be easily de-
stabilized. Jassby [52], however, has subsequently
noted that these instabilities are unlikely to persist
under steady-state conditions, provided effects, such
as charge exchange and large orbit losses of decelerat-
ing ions, do not severely deplete the lower-energy
portion of the distribution. Although the linear
stability compared to parallel injection is much worse,
perpendicular-injection schemes provide the possibility
of more efficient penetration of energetic ions. In
particular, Jassby and Goldston [222] have recently
proposed that perpendicular injection into vertically
asymmetric toroidal field ripples can serve this pur-
pose. The basic notion here is that the energetic ions,
formed from the beam by ionization and charge
exchange, will be mirror-trapped in the ripples and
drift upward (i.e. into the plasma interior) with the
VB-drift. By appropriately shaping the ripple, the
ions can be de-trapped near the centre of the system,
where they assume banana orbits and thermalize.
Motivated by these considerations, Krommes, et al.
[223] investigated the related high-frequency micro-
instabilities. By taking into account the stabilizing
influence of the radial convection of energy (associated,
e.g. with magnetic-shear effects), the authors found
that the beam density threshold, ny/n, for the onset



of lower hybrid and convective loss-cone modes could
be avoided if the beam is sufficiently spread. Above
the linear stability threshold, quasi-linear estimates

of the velocity (v ) diffusion indicated that for typical
parameters a sufficient spread in the distribution is
reached before the instabilities grow to significant
amplitudes.

Before leaving the subject of high-frequency tokamak
microinstabilities, it should be noted that in the
presence of an applied electric field, ¢ (below the
critical runaway field), the resulting velocity-space
anisotropy generated in the electron distribution can
also excite such modes. Coppi, et al. [59, 216] have
extensively investigated this problem in the radially
local, collisionless limit. Using a single-particle analysis,
the authors numerically integrated a collisionless form
of the drift-kinetic equation to obtain non-Maxwellian
distributions. In the direction of acceleration by ¢,
it was found that an interval of positive slope could
develop, while in the opposite direction a “loss-cone’
tended to result. These so-called “slide-away’’ elec-
tron distributions were in turn found to give rise to
electrostatic instabilities with characteristic frequencies
close to the electron-cyclotron (£2¢) and ion plasma
(wpi) frequencies. The authors have proposed that
the presence of such modes could account for the
observation of increased ion temperatures and emission
at the electron-cyclotron and ion plasma frequencies
on the ALCATOR experiment.

5.3. Alpha-particle-driven modes

High-energy alpha-particles produced in fusion
reactions can provide still another source of velocity-
space anisotropy. The resulting “thermonuclear”
instabilities are analogous to the fast-ion-driven modes
discussed in the preceding section. Just as in the case
of high-energy beams, spatial gradients associated with
the alpha-particles can also be an accessible source of
free energy. For example, Mikhailovskii [62] has
pointed out that alpha-particle density gradients can
drive shear-Alfvén modes unstable. He has found that
such modes can be dangerous even for isotropic
velocity distributions provided vy, > vy, i.e. if the
alpha-particle velocity exceeds the Alfvén speed. Also,
as noted in Section 5.1, shear-Alfvén modes can be
additionally de-stabilized by resonant interactions
with alpha particles that have unfavourable VB
drifts {57].

Investigations of unstable modes driven by the
velocity-space anisotropy of the alpha particles have
primarily been focused on the fast magnetosonic
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(compressional Alfvén) waves. In particular, Kaladze
and Mikhailovskii [60] have noted that these waves
can be de-stabilized by resonant interactions with
trapped alpha-particles at the alpha-particle gyro-
frequency. Using a delta-function distribution, the
authors found the growth rates to be proportional to
the alpha-particle density. In subsequent studies,
Lominadze and Mikhailovskii [61] showed that thermal
spread in the distribution exerts a strong stabilizing
influence, and Kaladze, et al. [224] demonstrated that
vertical ellipticity in the plasma cross-section also
favours stability. With the exception of Ref.[57],

all of the alpha-particle-related calculations mentioned
in the present section were carried out in the radially
local limit.

6. CONCLUSIONS

As is obvious from the large amount of material
discussed in this review, the investigation of micro-
instabilities in tokamaks has remained an active area
of theoretical studies in recent years. The purpose of
this final section is to summarize the current status of
research on the more actively analysed modes and to
comment on important aspects of these instabilities
which remain to be investigated.

In the area of linear low-frequency microinstability
theory, the dissipative (collisional) and universal
(collisionless) drift modes together with the trapped-
electron and trapped-ion modes have received the
most attention. Many important features, such as the
inclusion of essential geometric and collisional effects,
have been incorporated to provide more reliable
estimates of stability criteria and growth rates. In
particular, toroidal effects associated with VB-drifts
have led to significantly more pessimistic predictions
for stability.

With regard to the electrostatic analysis of dissi-
pative and universal drift instabilities, the most interest-
ing recent development is that, for a sheared slab
model (1D-radial limit), these eigenmodes have been
found to be stable [19a, 19b]. The calculations here
were carried out in the long-wavelength (kyp; < 1)
regime and involved retaining the complete de-
stabilizing electron response in a non-perturbative
analysis. Although unstable normal modes can be
recovered by considering highly peaked density pro-
files [14], the requirement here that the width of the
w,-profile be of the order of a few ion gyroradii is
not likely to be satisfied in most experiments of
current interest. In the light of these recent results, it
would be of interest to re-examine impurity-driven
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[18] and current-driven [12] drift eigenmodes in a
sheared-slab geometry.

Despite the slab model results, drift instabilities
can still readily appear in tokamaks as a consequence
of the toroidal coupling effects, emphasized by
Taylor [88] and discussed in detail in Section 2.2.3.
The important point here is that the effective potential
in the differential equation governing the eigenmodes
in the long-wavelength regime can be converted from
its “anti-well” character to that of a well by the
toroidal terms. This, in turn, can prevent the stabiliz-
ing propagation of energy away from the unstable
region, and leads to a localized (“‘ballooning’) mode
structure along the field line. Although the rough
analytic models indicate the requirement that
rq'/q < 1/2, for the toroidal coupling effects to be
significant, recent 2D numerical calculations [141]
seem to indicate that even at larger values of shear
(rq'/q > 1/2), unstable drift eigenmodes can persist
in a torus. The specific influence of shear on drift
instabilities for arbitrary wavelengths in a toroidal
geometry remains under investigation. In any case,
for tokamak systems, it can be concluded at the
present time that it is possible for dissipative drift
modes to appear in the Pfirsch-Schliiter regime
(v*¥> €7¥?) and the universal modes in the plateau
regime (1 <} <e™32). If present, the most unstable
eigenmodes will tend to have a localized or ballooning
structure along the field line and characteristic wave
numbers and frequencies falling in the familiar ranges,
k1p; $ 1 and vi/Rq < w < ve/Rq with w < we.

In the area of trapped-particle instabilities, the most
significant theoretical developments have involved
(i) the understanding of the role of VB-drift effects;
and (ii) the fully two-dimensional analysis of the
trapped-electron modes in a toroidal geometry.
Specifically, the inclusion of the VB-drift term in
the non-adiabatic electron response leads to strongly
de-stabilizing resonant [23] and non-resonant [24]
effects on the trapped-electron modes. As a result,
these instabilities can persist in the higher-temperature
(more collisionless) regimes where they were pre-
viously believed to be stable. In particular, if design
parameters are achieved, it is possible that both
trapped-electron and trapped-ion instabilities could
contribute to anomalous transport in large tokamaks
such as T-10 and PLT.

With regard to the 2D analysis of trapped-electron
eigenmodes, the results from these studies [27, 89, 90}
have demonstrated that the toroidal effects (including
the contributions from the trapped electrons and ion
VB-drifts) produce a ballooning-type mode structure
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along the field line. These eigenmodes, which extend
over many rational surfaces, appear to be insensitive
to shear stabilization for rq'/q < 1 [141]. The deter-
mination of their actual radial extent is currently
under investigation and involves the inclusion of the
slow radial variations in equilibrium quantities and
their gradients. With regard to the trapped-ion insta-
bilities, the complete 2D mode structure in a toroidal
geometry has yet to be determined. As a consequence,
the true influence of shear on these eigenmodes
remains an open question.

Summarily, the current status of the theory of
trapped-particle instabilities indicates that within the
banana regime, Vi <1, both trapped-electron and
trapped-ion modes are likely to be present. Although
the trapped-electron analysis is valid for arbitrary
wavelengths, the fastest growing modes appear to
have roughly the same characteristic wave numbers
and frequencies as the drift instabilities, i.e. k| p; <1
and w S wy. On the other hand, trapped-ion mode
calculations have only been carried out in the long-
wavelength limit where k| pg; <1 with pp; being the
average ion radial banana width. Local and radial 1D
calculations indicate that these long-wavelength, low-
frequency instabilities (w < €'/2v;) will be very
difficult to stabilize if sufficiently large ion tempera-
ture gradients (n; > 2/3) are present to eliminate the
favourable ion Landau damping effects.

With the continued progress toward reactor con-
ditions, the subject of finite-beta effects on tokamak
microinstabilities has become a prime area of interest.
For low-frequency electrostatic modes, modifications
in the form of enhanced favourable curvature [40, 92,
94] and coupling to shear-Alfvén waves [48, 28] tend
to favour stability. However, it has also been pointed
out that the shear-Alfvén branch itself can be de-
stabilized by finite-beta effects (for f, > 1) in the
presence of toroidal curvature [49, 50]. Since w ~ kyva
for these modes and k|| is a non-local quantity, future
work in this area should focus on the radial structure.
In addition, with regard to both shear-Alfvén modes
and finite-beta modified drift waves, further investiga-
tions of ballooning effects associated with VB-drifts
and the presence of trapped particles are needed.
High-energy ions from neutral-beam injection and
alpha-particles from fusion reactions can additionally
contribute to the de-stabilization of the shear-Alfvén
waves [57, 62]. With regard to high-frequency insta-
bilities driven by energetic beam ions, extensive
studies [54—56] have indicated that for steady-state
operation the system should be stable to such disturb-
ances if parallel injection is employed.



As a final note, it should be mentioned that the
basic kinetic-theory formalism applied to the investiga-
tion of microinstabilities has also been applied to the
study of collisional electromagnetic instabilities such
as tearing modes [225]. Since these modes generally
fall in the category of MHD instabilities, they have not
been discussed in the present review. Nevertheless, it
is of interest to note that the magnetic perturbations
generated by these modes, as well as by the shear-Alfvén
and finite-§-modified drift waves, could lead to the
formation of turbulent magnetic islands. As a result,
plasma transport properties would be accordingly
affected [226]. Hence, the kinetic treatment of the
collisional electromagnetic modes is currently a subject
of active research [227].

The non-linear theory required to determine the
influence of microinstabilities on confinement is far
less developed than the corresponding linear theory.
Numerous approaches ranging from phenomenological
models to formal weak- and strong-turbulence des-
criptions have been extensively studied. However, a
compelling self-consistent non-linear theory remains
elusive. Most estimates of anomalous transport and
related confinement times are still either based on or
do not markedly differ from the rough, upper-bound-
type D ~ 7/kf approximation [2]. Exceptions for
specific instabilities have been discussed in some
detail in Section 4.

Fluctuation levels and spectral characteristics
obtained from particle code simulations as well as
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from recent toroidal experiments have helped to
indicate the relevance (or lack of relevance) of assump-
tions made in the non-linear theories. For example,
even though the measured fluctuation amplitudes are
small (18n/n| < 1072), the large frequency spread,
|Aw/w|, observed in the ATC experiment [208—210]
is difficult to reconcile with most weak-turbulence
calculations. In generai, careful measurements of
frequency and wave spectra have provided compelling
evidence that low-frequency drift-type instabilities

are likely to be present in toroidal systems. Although
the fluctuation amplitudes are consistent with the
observed anomalous transport, a definitive explanation
of the empirical scalings, D « 1/n and (n)pax < B/R,
found, e.g. inthe ALCATOR experiment [214], remains
to be determined [228].

ACKNOWLEDGEMENTS

The author thanks Drs E.A. Frieman, J.L. Johnson,
and P.H. Rutherford for suggesting this project and
for their interest and encouragement. Very helpful
discussions with Dr. G. Rewoldt and numerous other
research personnel at Princeton are also gratefully
acknowledged. Finally, special thanks go to Ms
Rebecca Bell for her excellent work on this lengthy
manuscript.

REFERENCES

[1] FURTH, H.P., Nucl. Fusion 15 (1975) 487.

(2] KADOMTSEV, B.B., POGUTSE, O.P., Nucl. Fusion 11 (1971) 67.

[3] KADOMTSEV, B.B., POGUTSE, O.P., in Reviews of Plasma Physics

(LEONTOVICH, M.A., Ed.) Consultants Bureau, New York (1970)

Vol. 5, 249.

(4] MOROZOV, A.I., SOLOVEV, L.S., Sov. Phys., Doklady 4 (1959)

1031.

[5] GALEEV, A.A., SAGDEEV, R.Z., Sov. Phys., JETP 26 (1968) 233.

1145



TANG

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

(14]

[(15]

(16]

(17]

(18]

[19]

1146

ROSENBLUTH, M.N., HAZELTINE, R.D., HINTON, F.L., Phys.

Fluids 15 (1972) 116.
HAZELTINE, R.D., HINTON, F.L., Revs. Mod. Phys. 48 (1976) 239.

KADOMTSEV, B.B., Plasma Turbulence, Academic Press, New York

(1965) 79.

MIKHAILOVSKII, A.B., Theory of Plasma Instabilities, Consul-

tants Bureau, New York, (1974) Vol. 2.

BRAGINSKII, S.I., in Reviews of Plasma Physics (LEONTOVICH,

M.A., Ed.) Consultants Bureau, New York (1965) Vol. 1, 205.
YOSHIKAWA, S., Phys. Rev. Lett. gé (1970) 353; ARTSIMOVICH,
L.A., JETP Lett. 13 (1971) 70.

See for example, CALLEN, J., COPPI, B., DAGAZIAN, R.,

GAJEWSKI, R., SIGMAR, D., in Plasma Physics and Controlled

Nuclear Fusion Research (International Atomic Energy Agency,

Vienna, 1971) vol. 2, 451.

GALEEV, A.A., ORAEVSKY, V.N., SAGDEEV, R.Z., Sov. Phys.,

JETP 17 (1963) 615.

KRALL, N.A., ROSENBLUTH, M.N., Phys. Fluids 8 (1965) 1488;

KRALL, N.A., in Advances in Plasma Physics (SIMON, A.,

THOMPSON, W., Eds.) Wiley, New York (1968) Vol. 1, 153.
PEARLSTEIN, L.D., BERK, H.L., Phys. Rev. Lett. 23 (1969) 220.
GLADD, N.T., HORTON, C.W., Phys. Fluids 16 (1973) 879.

See for example, LIU, C.S., ROSENBLUTH, M.N., HORTON, C.W.,

Phys. Rev. Lett. 29 (1972) 1489.

CopPPI, B., FURTH, H.P., ROSENBLUTH, M.N., SAGDEEV, R.Z.,

Phys. Rev. Lett. 17 (1966) 377.

See for example, Ref. [8], 85.



[19a]

[19b]

[20]

[21]

[22]

(23]

[24]

[25]

[(26]

[27]

[28]

(29]

[30]

[31]

TOKAMAK MICROINSTABILITIES

ROSS, D.W., MAHAJAN, S.M., Phys. Rev. Lett. 40 (1978) 325;
TSANG, K.T., CATTO, P.J., WHITSON, J.C., SMITH, J., Phys.

Rev. Lett. 40, (1978) 327.

CHEN, L., GUZDAR, P.N., HSU, J.Y., KAW, P.K., OBERMAN, C.,
WHITE, R.B., Preprint, Princeton Plasma Phys. Lab. Rept.

PPPL-1423 (June, 1978).

KADOMTSEV, B.B., POGUTSE, O.P., Sov. Phys., Doklady 14 (1969)

470.

LIU, C.S., ROSENBLUTH, M.N., TANG, W.M., Phys. Fluids 19

(1976) 1040.

TANG, W.M., RUTHERFORD, P.H., FURTH, H.P., ADAM, J.C.,

Phys. Rev. Lett. 35 (1975) 660.

ADAM, J.C., TANG, W.M., RUTHERFORD, P.H., Phys. Fluids 19

(1976) 561.

COPPI, B., REWOLDT, G., Phys. Rev. Lett. 33 (1974) 1329;

Phys. Lett. 54A (1975) 301.
YOSHIKAWA, S., OKABAYASHI, M., Phys. Fluids 17 (1974) 1762.
See for example, Ref. [23].

REWOLDT, G., TANG, W.M., FRIEMAN, E.A., Phys. Fluids 20

(1977) 402.

TANG, W.M., LIU, C.S., ROSENBLUTH, M.N., CATTO, P.J.,

CALLEN, J.D., Nucl. Fusion 16 (1976) 191.

ROSENBLUTH, M.N., ROSS, D.W., KOSTOMAROV, D.P., Nucl. Fusion

12 (1972) 3.

SAGDEEV, R.Z., GALEEV, A.A., Sov. Phys., Doklady 13 (1968)

562,
TANG, W.M., Nucl. Fusion 13 (1973) 883.

1147



TANG
[32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

(48]

[49]

[501]

1148

TANG, W.M., Phys. Fluids 17 (1974) 1249.

TANG, W.M., ADAM, J.C., ROSS, D.W., Phys. Fluids 20 (1977)

430.

GLADD, N.T., ROSS, D.W., Phys. Fluids 16 (1973) 1706.
DOBROWOLNY, M., ROSS, D.W., Phys. Fluids 18 (1975) 717.
DOBROWOLNY, M., Nucl. Fusion 14 (1974) 599.

ROSENBLUTH, M.N., Phys. Fluids 11 (1968) 869.

BHADRA, D.K., LIU, C.S., Phys. Fluids 14 (1971) 2152.

DOBROWOLNY, M., PARAVANO, A., Plasma Phys. 18 (1976) 76l.
ROSENBLUTH, M.N., SLOAN, M.L., Phys. Fluids 14 (1971) 1725.

GLASSER, A.H., FRIEMAN, E.A., YOSHIKAWA, S., Phys. Fluids

17 (1974) 181.

ADAM, J.C., LAVAL, G., PELLAT, R., Nucl. Fusion 13 (1973) 47.
COPPI, B., Phys. Rev. Lett. 29 (1972) 1076.

COPPI, B., MINARDI, E., Plasma Phys. 16 (1974) 1021.

COPPI, B., TARONI, A., Plasma Phys. 16 (1974) 161; Plasma

Phys. 17 (1975) 951.

COPPI, B., REWOLDT, G., in Advances in Plasma Physics

(SIMON, A., THOMPSON, W., Eds.) Wiley, New York (1976)

Vol. 6, 421.
COPPI, B., Phys. Rev. Lett. 31 (1973) 1443.

CATTO, P.J., EL-NADI, A.M., LIU, C.S., ROSENBLUTH, M.N.,

Nucl. Fusion 14 (1974) 405.
MIKHAILOVSKII, A.B., Nucl. Fusion 13 (1973) 259.

MIKHAILOVSKII, A.B., Sov. J. Plasma Phys. 1 (1975) 38.



(51]

[52]

[53]

[54]

[55]

[56]

[571]

[58]

[59]

[60]

[(61]

[62]

[63]

(64]

[65]

[66]

TOKAMAK MICROINSTABILITIES

DAWSON, J.M., FURTH, H.P., TENNEY, F.H., Phys. Rev. Lett.
26 (1973) 1156; FURTH, H.P., JASSBY, D.L., Phys. Rev. Lett.

32 (1974) 1176.
JASSBY, D.L., Nucl. Fusion 17 (1977) 309.

STIX, T.H., Phys. Fluids 16 (1973) 1922; Plasma Phys. 14

(1972) 367.
CORDEY, J.G., HOUGHTON, M.J., Nucl. Fusion 13 (1973) 215.

BERK, H.L., HORTON, W., ROSENBLUTH, M.N., RUTHERFORD, P.H.,

Nucl. Fusion 15 (1975) 819.
PERKINS, F.W., Phys. Fluids 19 (1976) 1012.

ROSENBLUTH, M.N., RUTHERFORD, P.H., Phys. Rev. Lett.

34 (1975) 1428.
COPPI, B., BHADRA, D.K., Phys. Fluids 18 (1975) 692.

COPPI, B., PEGORARO, F., POZZOLI, R., REWOLDT, G., Nucl.

Fusion 16 (1976) 309.

KALADZE, T.D., MIKHAILVOSKII, A.B., Sov. J. Plasma Phys.

1 (1975) 128.

LOMINADZE, D.G., MIKHAILOVSKII, A.B., Sov. J. Plasma Phys.

1 (1975) 291.
MIKHAILOVSKII, A.B., Sov. Phys., JETP 41 (1976) 890.

HASTIE, R.J., TAYLOR, J.B., HAAS, F.A., Ann. Phys. 41
(1967) 302; HASTIE, R.J., TAYLOR, J.B., Plasma Phys. 13

(1968) 275.
RUTHERFORD, P.H., FRIEMAN, E.A., Phys. Fluids ll (1968) 569.
JAMIN, E., Ph.D. Dissertation, Princeton University (1971).

CATTO, P.J., TSANG, K.T., Phys. Fluids 20 (1977) 396.

1149



TANG

(67]

[68]

[69]

[70]

[71]

(72]

[73]

[74]

[75]

[76]

(77}

[78]

(791

[80]

[81]

[82]

1150

CONNOR, J.W., HASTIE, R.J., Plasma Phys. 17 (1975) 97.

ROSENBLUTH, M.N., MACDONALD, W.M., JUDD, D.L., Phys. Rev.

107 (1957) 1.

CALLEN, J.D., BEASLEY, C.0., FISCHER, S.K., HICKS, H.R.,

SEELY, J.F., Bull. Am. Phys. Soc. 19 (1974) 863.
HINTON, F.L., ROSS, D.W., Nucl. Fusion 16 (1976) 329.
HORTON, W., Phys. Fluids 19 (1976) 711.

CATTO, P.J., TSANG, K.T., CALLEN, J.D., TANG, W.M., Phys.

Fluids 19 (1976) 1596.

BHATNAGAR, P.L., GROSS, E.P., KROOK, M., Phys. Rev. 94

(1954) 511; GROSS, E.P., KROOK, M., Phys. Rev. 102 (1956) 593.

See for example, ROGISTER, A., HASSELBERG, G., Phys. Rev.

Lett. 37 (1976) 906; Nucl. Fusion 16 (1976) 943.
DOUGHERTY, J.P., Phys. Fluids 7 (1964) 1788.

MIKHAILOVSKII, A.B., POGUTSE, O0.P., Sov. Phys., Tech. Phys.

11 (1966) 153.
See for example, Ref. [3], 265.

COPPI, B., in Advances in Plasma Physics (SIMON, A., THOMPSON,

W.B., Eds.) Wiley, New York (1971) Vol. 4, 173.
ROBERTS, K.V., TAYLOR, J.B., Phys. Fluids 8 (1965) 315.

LIEWER, P.C., MANHEIMER, W.M., TANG, W.M., Phys. Fluids 19

(1976) 276.
MIKHAILOVSKII, A.B., JETP Lett. 23 (1976) 395.

GALEEV, A.A., in Proceedings of the Third International

Symposium on Toroidal Plasma Confinement, Garching, FRG,

26-30 March 1973, paper El-1; SAGDEEV, R.Z., GALEEV, A.A.,

Comments on Plasma Phys. and Controlled Fusion 1 (1972) 23.



[83]

[84]

[85]

(86]

(871

[88]

[89]

[90]

[91]

[92]

[93]

(94]

[95]

TOKAMAK MICROINSTABILITIES

HORTON, W., ROSS, D.W., TANG, W.M., BERK, H.L., FRIEMAN, E.A.,
LAQUEY, R.E., LOVELACE, R.V., MAHAJAN, S.M., ROSENBLUTH, M.N.,

RUTHERFORD, P.H., in Plasma Physics and Controlled Nuclear

Fusion Research (International Atomic Energy Agency, Vienna,

1975) Vvol. 1, 541.

FRIED, B.D., CONTE, S.D., The Plasma Dispersion Function,

Academic Press, New York (1961).
ROSENBLUTH, M.N., CATTO, P.J., Nucl. Fusion lé (1975) 573.

JABLON, C., LAVAL, G., PELLAT, R., Phys. Rev. Lett. 27 (1971)

83.
ROSS, D.W., HORTON, C.W., Phys. Rev. Lett. 28 (1972) 484.

TAYLOR, J.B., in Plasma Physics and Controlled Nuclear Fusion

Research (International Atomic Energy Agency, Vienna, 1977),

Vol. 2, p. 323.

TANG, W.M., ADAM, J.C., COHEN, B.I., FRIEMAN, E.A., KROMMES,
J.A., REWOLDT, G., ROSS, D.W., ROSENBLUTH, M.N., RUTHERFORD,

P.H., CATTO, P.J., TSANG, K.T., CALLEN, J.D., in Plasma

Physics and Controlled Nuclear Fusion Research (International

Atomic Energy Agency, Vienna, 1977), Vol. 2, p. 489.
ROSS, D.W., MINER, W.H., Phys. Fluids 20 (1977) 1957.
MUKHOVATOV, V.S., SHAFRANOV, V.D., Nucl. Fusion 11 (1971) 605.

DOBROTT, D.R., GREENE, J.M., Plasma Physics 17 (1975) 929.

SHAFRANOV, V.D., in Reviews of Plasma Physics (LEONTOVICH,

M.A., Ed.) Consultants Bureau, New York, (1966) Vol. 2, 103.

NEWBERGER, B.S., Ph.D. Dissertation, Princeton University

(1976) .

MIKHAILOVSKII, A.B., RUDAKOV, L.I., Sov. Phys., JETP 17 (1963)

621.

1151



TANG

[96]

(971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

1152

MISHIN, E.V., Sov. Phys., JETP 32 (1971) 148.

CHEUNG, L., HORTON, W., Ann. Phys. 81 (1973) 201.

HAZELTINE, R., Plasma Phys. 15 (1973) 77.

RUKHADZE, A.A., SILIN, V.P., Sov. Phys. Uspekhi 11 (1969) 659.
RUTHERFORD, P.H., FRIEMAN, E.A., Phys. Fluids 10 (1967) 1007.
MANHEIMER, W., Phys. Fluids 19 (1976) 335.

LAU, Y.Y., BRIGGS, R.J., Nucl. Fusion 15 (1975) 103.

COPPI; B., Phys. Rev. Lett. 25 (1970) 851.

ROSENBLUTH, M.N., LIU, C.S., Phys. Fluids 15 (1972) 1801.
LIU, C.S., Phys. Rev. Lett. 27 (1971) 1637.

HORTON, W., Phys. Rev. Lett. 28 (1972) 1506.

CORDEY, J.G., HASTIE, R.J.,

Nucl. Fusion 17 (1977) 523.

LEE, W.W., OKUDA, H., Phys. Rev. Lett. 36 (1976) 870.
WONG, S.K., Phys. Fluids 18 (1975) 391.

ONG, R.S.B., YU, M.Y., J. Plasma Phys. 4 (1970) 729.

BHADRA, D.K., Phys. Fluids 14 (1971) 977; Plasma Phys. 11

(1969) 247.
KOCH, R.A., HORTON, W., Phys. Fluids 18 (1975) 861.

COPPI, B., REWOLDT, G., SCHEP, T., Phys. Fluids 19 (1976)

1144.

DESCHAMPS, P., GRAVIER, R., RENAUD, C., SAMAIN, A., Phys.

Rev. Lett. 31 (1973) 1457.

SAUTHOFF, N.R., OKABAYASHI, M., SCHMIDT, J.A., Phys. Fluids

18 (1975) 915.



[116]

[117]

[118]

[119]

[120]
[121]
[122]

[123]

[124]
[125]

[126]

[127]
[128]
[129]

{130]

(131]
[132]

[133]

TOKAMAK MICROINSTABILITIES

HORTON, W., ESTES, R., KWAK, H., CHOI, D., Phys. Fluids

(in press).

TANG, W.M., RUTHERFORD, P.H., FRIEMAN, E.A.,, LIU, C.S.,

Bull. Am. Phys. Soc. 19 (1974) 866.

TSANG, K.T., CALLEN, J.D., CATTO, P.J., Phys. Fluids 20

(1977) 2113.

COPPI, B., LAVAL, G., PELLAT, R., ROSENBLUTH, M.N., Plasma

Phys. 10 (1968) 1.

MIKHAILOVSKII, A.B., Sov. Phys. Doklady 21 (1976) 339.

ROSS, D.W., TANG, W.M., ADAM, J.C., Phys. Fluids 20 (1977)613.
CHU, K.R., MANHEIMER, W.M., Nucl. Fusion 18 (1978) 29.

DUCHS, D.F., POST, D.E., RUTHERFORD, P.H., Nucl. Fusion 17 (1977)

565.
ROSS, D.W., Nucl. Fusion 14 (1974) 447.
BHADRA, D.K., Phys. Fluids 18 (1975) 380.

BUSSAC, M.N., LAVAL, G., PELLAT, R., Phys. Rev. Lett. 30

(1973) 588.

COPPI, B., REM, J., Phys. Fluids 17 (1974) 184.
MATSUDA, Y., OKUDA, H., Phys. Rev. Lett. 36 (1976) 474.
SEN, A., SUNDARAM, A.K., Nucl. Fusion 16 (1976) 303.

PRAGER, S.C., SEN, A.K., MARSHALL, T.C., Phys. Rev. Lett.

33 (1974) 692.
CHEN, F.F., FURTH, H.P., Nucl. Fusion 9 (1969) 364.
FURTH, H.P., RUTHERFORD, Phys. Fluids l& (1969) 2638.

TAGGER, M., LAVAL, G., PELLAT, R., Nucl. Fusion 17 (1977)

109.

1153



TANG

(134] DOBROWOLNY, M., Plasma Phys. 16 (1974) 996.

[135] POGUTSE, O.P., Nucl. Fusion 9 (1969) 157.

[136] LIU, C.S., Phys. Fluids 12 (1969) 1489.

(137] LIU, C.S., BHADRA, D.K., Phys. Rev. Lett. 25 (1970) 1706.
(138] BRIGGS, R.J., LAU, Y.Y., Phys. Rev. Lett. 28 (1972) 1248.
[139] cCoOPPI, B., POZZOLI, R., Plasma Phys. 16 (1973) 223.

[140] cCOPPI, B., PEGORARO, F., Nucl. Fusion 17 (1977) 969.

[141] REWOLDT, G., TANG, W.M., FRIEMAN, E.A., Phys. Fluids (in
O

press).

[142]) SAGDEEV, R.Z., GALEEV, A.A., Nonlinear Plasma Theory,

Benjamin, New York (1969).

[143] TSYTOVICH, V.N., Nonlinear Effects in Plasma, Plenum, New

York (1970).

[144] DAVIDSON, R.C., Methods in Nonlinear Plasma Theory, Academic

Press, New York (1972).

(145] DUPREE, T.H., Phys. Fluids 11 (1968) 2680; Phys. Fluids 10
(1967) 1049; Phys. Fluids 9 (1966) 1773.

(146] GALEEV, A.A., Phys. Fluids 10 (1967) 1041.

[147] WEINSTOCK, J., Phys. Fluids 12 (1969) 1045; Phys. Fluids

11l (1968) 1977.

[148] See for example, OKUDA, H., DAWSON, J.M., Phys. Fluids 16

(1973) 408.

[149]) DUPREE, T.H., Phys. Fluids 17 (1974) 100; Phys. Fluids 15
(1972) 334; Comments on Plasma Phys. and Controlled Fusion

1 (1972) 33.

[150] WADDELL, B.V., Nucl. Fusion 15 (1975) 803.

1154



TOKAMAK MICROINSTABILITIES

[151] EHST, D.A., Ph.D. Dissertation, Massachusetts Institute of

Technology (1976); Phys. Fluids 20 (1977) 2076.

[152] SUGIHARA, M., OGASAWARA, M., Journal of Phys. Soc. of

Japan 41 (1976) 1370.
[{153] JABLON, C.J., Phys. Rev. Lett. 28 (1972) 880.

[154] KADOMTSEV, B.B., POGUTSE, O0.P., Sov. Phys., Doklady 14

(1970) 863; Sov. Phys., Doklady 14 (1970) 88l.
[155] OTT, E., MANHEIMER, W.M., Phys. Fluids 19 (1976) 1035.

[(156] SMITH, G.R., Phys. Rev. Lett. 38 (1977) 970.

[157] DOBROWOLNY, M., NEGRINI, P., Phys. Rev. Lett. 28 (1972) 132.

[158] JABLON, C., RUTHERFORD, P.H., Phys. Fluids 14 (1971) 2033;
DOBROWOLNY, M., POGUTSE, O.P., Phys. Rev. Lett. 25 (1970)

1608; ROSS, D.W., POGUTSE, O.P., Nucl. Fusion 11 (1971) 127.
[159] BERK, H.L., ROSENBLUTH, M.N., Nucl. Fusion 15 (1975) 1013.

[160] COHEN, B.I., KROMMES, J.A., TANG, W.M., ROSENBLUTH, M.N.,

Nucl. Fusion 16 (1976) 971.
(161] WIMMEL, H.K., Plasma Phys. 18 (1975) 321; Plasma Phys. 18 (1975) 693.

[162] SAISON, R., WIMMEL, H.K., in Plasma Physics and Controlled

Nuclear Fusion Research (International Atomic Energy Agency,

Vienna, 1977), Vol. 2, 481.

[163] LAQUEY, R.E., MAHAJAN, S.M., RUTHERFORD, P.H., TANG, W.M.,

Phys. Rev. Lett. 34 (1975) 391.
[164] COHEN, B.I., TANG, W.M., Nucl. Fusion (to be published).

[165] TASSO, H., Phys. Lett 24A (1967) 618; ORAEVSKII, V.N.,

TASSO, H., WOBIG, H., in Plasma Physics and Controlled

Nuclear Fusion Research (International Atomic Energy Agency,

Vienna, 1969) Vol. I, 671.

1155



TANG

(166] OTT, E., MANHEIMER, W.M., BOOK, D.L., BORIS, J.P., Phys.

Fluids 16 (1973) 885.

[167] MANHEIMER, W.M., CHU, K.R., OTT, E., BORIS, J.P., CALLEN,

J.D., Nucl. Fusion 16 (1976) 203.
(168] HORTON, W., Phys. Rev. Lett. 37 (1976) 1269.

[169] HORTON, W., OKUDA, H., CHENG, C.Z., KUO, Y.Y., LEE, W.W.,

MATSUDA, Y., TRUE, M., in Plasma Physics and Controlled

Nuclear Fusion Research (International Atomic Energy Agency,

Vienna, 1977), Vol. 2, 467.

[170] See for example, DOBROWOLNY, M., NOCENTINI, A., Plasma Phys.

16 (1974) 433; Nucl. Fusion 13 (1973) 629.

[171] HASSELBERG, G., ROGISTER, A., EL-NADI, A., Phys. Fluids

20 (1977) 982.
[172] SATYA, Y.S., KAW, P.K., Phys. Rev. Lett 31 (1973) 1453.
[173] CHEN, L., KAW, P.K., TANG, W.M., Nucl. Fusion 16 (1976) 661.

[174] VEDENOV, A.A., GORDEEV, A.V., RUDAKOV, L.I., Plasma Phys.

9 (1967) 719.
[175] SIMON, A., Phys. Fluids 11 (1968) 1181.
[176] HINTON, F.L., HORTON, C.W., Phys. Fluids 14 (1971) 116.
[177] MONTICELLO, D.A., SIMON, A., Phys. Fluids 17 (1974) 791.
[178] STIX, T.H., Phys. Fluids 12 (1969) 627.
[179) SIMON, A., GROSS, L.S., Phys. Fluids 20 (1977) 946.

[180] MANHEIMER, W.M., CHU, K.R., OTT, E., BORIS, J.P., Phys. Rev.
Lett. 37 (1976) 286; MANHEIMER, W.M., BORIS, J.P.,

Comments Plasma Phys. 3 (1977) 15.

(181] DAWSON, J.M., OKUDA, H., ROSEN, B., in Methods in Computational

Physics, Academic Press, New York (1976) Vol. 16, 281.

1156



(182]

[183]

[184]

[185]

{1861

[187]

(188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

TOKAMAK MICROINSTABILITIES
CHENG, C.Z., OKUDA, H., Phys. Rev. Lett. 38 (1977) 708.
CHENG, C.Z., OKUDA, H., Nucl. Fusion 18 (1978) 587.
OKABAYASHI, M., ARUNASALAM, V., Nucl. Fusion 17 (1977) 497.

DEAN, S.0., CALLEN, J.D., FURTH, H.P., CLARKE, J.F., OHKAWA,
T., RUTHERFORD, P.H., "Status and Objectives of Tokamak
Systems for Fusion Research," USAEC Rept. WASH-1295, U. S.

Atomic Energy Commission, Washington, D.C. (1974).

DNESTROVSKII, Y.N., KOSTOMAROV, D.P., Sov. At. Energy 29

(1970) 1205.

DNESTROVSKII, Y.N., KOSTOMAROV, D.P., PAVLOVA, JETP Lett.

3 (1971) 493.

MERCIER, C., SOUBBARAMAYER, in Plasma Physics and Controlled

Nuclear Fusion Research (International Atomic Energy Agency,

Vienna, 1971) Vol. I, 425.

DUCHS, D.F., FURTH, H.P., RUTHERFORD, P.H., in Plasma Physics

and Controlled Nuclear Fusion Research (International Atomic

Energy Agency, Vienna, 1971) Vol. I, 369.

HOGAN, J.T., in Methods in Computational Physics, Academic

Press, New York (1976) Vol. 16, 131.
KRALL, N.A., LIEWER, P.C., Phys. Rev. Lett. gé (1976) 1o041.

MANHEIMER, W.M., OTT, E., TANG, W.M., Phys. Fluids 20 (1977)

806.

HENDEL, H.W., CHU, T.K., POLITZER, P.A., Phys. Fluids 11

(1968) 2426.
ELLIS, R.F., MOTLEY, R.W., Phys. Fluids 17 (1974) 582.
POLITZER, P.A., Phys. Fluids 14 (1971) 2410; STOTT, P.E.,

LITTLE, P.F., BURT, J., Phys. Rev. Lett. (1970) 996.

1157



TANG

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

1158

PRIMMERMAN, C.A., LIDSKY, L.M., POLITZER, P.A., Phys. Rev.
Lett. 33 (1974) 957; PRIMMERMAN, C.A., Ph.D. Dissertation,

Massachusetts Institute of Technology (1975).
YOSHIKAWA, S., Nucl. Fusion 13 (1973) 433.

PACHER, H.D., PACHER, G.W., YOSHIKAWA, S., Phys. Rev. Lett.
25 (1970) 1559; PACHER, H.D., VON GOELER, S., Phys. Fluids

14 (1971) 1268.
EJIMA, S., OKABAYASHI, M., Phys. Fluids 18 (1975) 904.

SAUTHOFF, N.R., Ph.D. Dissertation, Princeton University

(1975).

ARUNASALAM, V., OKABAYASHI, M., HAWRYLUK, R.J., SUCKEWER,

S., Phys. Rev. Lett. 36 (1976) 726; Phys. Fluids 20 (1977) 95.

ALCOCK, M.W., ASHBY, D.E.T.F., CORDEY, J.G., EDLINGTON, T.,
FLETCHER, W.H.W., JONES, E.M., MALMBERG, J., RIVIERE, A.C.,

START, D.F.H., SWEETMAN, D.R., in Plasma Physics and Controlled

Nuclear Fusion Research (International Atomic Energy Agency,

Vienna, 1977), Vol. 2, 321.

DRAKE, J.R., GREENWOOD, J.R., NAVRATIL, G.A., POST, R.S.,
Phys. Fluids 20 (1977) 148; NAVRATIL, G.A., POST, R.S.,

EHRHARDT, A.B., Phys. Fluids 20 (1977) 156.

DRAKE, J.R., KERST, D.W., NAVRATIL, G.A., POST, R.S., EJIMA,
S., LAHAYE, R., MOELLER, C., OHKAWA, T., PETERSEN, P.I.,

PRATER, R., WONG, S.K., in Plasma Physics and Controlled

Nuclear Fusion Research (International Atomic Energy Agency,

Vienna, 1977), Vol. 2, 343.

KAWAHATA, K., FUJIWARA, M., J. Phys. Soc. Japan 40 (1976) 1150.

HATORI, T., NISHIKAWA, K.I., TERASHIMA, Y., DODO, T., OKADA,

0., in Plasma Physics and Controlled Nuclear Fusion Research




[207]

[208]

[209]

(210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

TOKAMAK MICROINSTABILITIES

(International Atomic Energy Agency, Vienna, 1976), vol. 2,

351.

HAMBERGER, S.M., SHARP, L.E., LISTER, J.B., MROWKA, S.,

Phys. Rev. Lett. 37 (1976) 1345.
MAZZUCATO, E., Phys. Rev. Lett. gﬁ (1976) 792.

GOLDSTON, R.J., MAZZUCATO, E., SLUSHER, R.E., SURKO, C.M.,

in Plasma Physics and Controlled Nuclear Fusion Research

(International Atomic Energy Agency, Vienna, 1977) Vol. I, 371.
SURKO, C.M., SLUSHER, R.E., Phys. Rev. Lett. 37 (1976) 1747.
HASEGAWA, A., Phys. Lett. 57A (1976) 143.

EQUIPE TFR, in Plasma Physics and Controlled Nuclear Fusion

Research (International Atomic Energy Agency, Vienna, 1977)
Vol. I, 35; "Ohmic Heating and Electron Power Balance in TFR,"
3rd Symposium on Plasma Heating in Toroidal Devices, Varenna,

Italy (Sept., 1976) private communication.

BERRY, L.A., (ORMAK GROUP), in Plasma Physics and Controlled

Nuclear Fusion Research(International Atomic Energy Agency,

Vienna, 1977) Vol. I, 49.

APGAR, E., (ALCATOR GROUP), in Plasma Physics and Controlled

Nuclear Fusion Research (International Atomic Energy Agency,

Vienna, 1977) Vol. I, 247.
CoPPI, B., LAMPIS, G., PEGORARO, F., Phys. Lett. 59A (1976) 118.

BASU, B., COPPI, B., MOLVIG, K., PEGORARO, F., HABER, I.,
HUI, B., PALMADESSO, P., PAPADOPOULOS, K., WINSOR, N., in

Plasma Physics and Controlled Nuclear Fusion Research (In-

ternational Atomic Energy Agency, Vienna, 1977), Vol. 2, 455.

MIKHAILOVSKII, A.B., FRIDMAN, A.M., Nucl. Fusion 16 (1976)

837.

1159



TANG

(218] CATTO, P.J., ROSENBLUTH, M.N., LIU, C.S., Phys. Fluids 16

(1973) 1719.
[219] MAI, L.P., HORTON, W., Phys. Fluids 18 (1975) 356.
[220] KORABLEV, L.V., RUDAKOV, L.I., Sov. Phys. JETP 27 (1968) 439.

[221] BEASLEY, C.0O., LOMINADZE, J.G., MIKHAILOVSKII, A.B.,

Sov. J. Plasma Phys. 2 (1976) 95.
[222] JAssBY, D.L., GOLDSTON, R.J., Nucl. Fusion 18 (1975) 356.
[223] KROMMES, J.A., ROSENBLUTH, M.N., TANG, W.M., Nucl. Fusion

17 (1977) 667.

[224] KALADZE, T.D., LOMINADZE, J.G., MIKHAILOVSKII, A.B.,

POKHOTELOV, D.A., Nucl. Fusion 16 (1976) 465.

[225] See for example, COPPI, B., Phys. Fluids 7 (1964) 1501.
[226] CALLEN, J.D., Phys. Rev. Lett. 39 (1977) 1540.

[227] DRAKE, J., LEE, Y.C., Phys. Fluids 20 (1977) 1431; CHEN,
L., RUTHERFORD, P.H., TANG, W.M., Phys. Rev. Lett. 39 (1977)

460.

[228] ROSENBLUTH, M.N., Theoretical Summary of Magnetic Confinement,
6th IAEA Conference on Plasma Physics and Controlled
Nuclear Fusion Research, Berchtesgaden, FRG, (Oct., 1976)

Nucl. Fusion 16 (1976) 1051.

1160



